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:f study of some of the previous work which had been performed. The second task
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] various problems. The third task was the verification and correction where
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ﬂj necessary of the finite element formulation for the eight-node quadrilateral
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shape function for node I

concentrated load

constant value for uniformly distributed load
velocity strain transformation matrix
deviatoric normal stresses (i=1,2,3)
internal strain energy

nodal displacement vector
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x-component of velocity

y-component of velocity

external work

Tinear impulse

global x-axis

global y-axis

amplitude of vibration for mode n at time t
Gauss-Legendre abscissae coefficient
constant values used in modal analyses

wave speed

x-distance from y-axis to a quadrature point
global velocity strain vector

corotational velocity strain vector

strain energy increment

x-component of external nodal force

y-component of external nodal force
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Gauss-Legendre weight coefficient

order of integration

constant value for mass per unit length
mode of vibration

distance from y-axis to geometric center of an element
time

displacement

velocity

acceleration

x-component of displacement

y-component of displacement

time varying uniformly distributed load
global x-coordinate

corotational x-coordinate

global y-coordinate

corotational y-coordinate

maximum y-displacement

increment of time (t), stress (o), and strain ()
summation

vibration shape for mode n at any x
shearing strain

normal strain

local y-coordinate for an element

angle of rotation

fraction of critical element damping
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v = Poisson's ratio '
£ = local x-coordinate for an element N
\
n = 3.1416 . . . J
0 = mass density L.
o,

o = normal stress <
?‘

= ] bed

°y1d yield stress :
T = shearing stress ?
w = frequency (also rotational velocity) 2
.l

= maximum frequency of the system !
“max quency y "4
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CHAPTER 1

Introduction

The content of this report gives a detailed description of the
research which was performed during the investigation of the
higher-order isoparametric continuum finite elements [five-node
triangle, six-node triangle, and eight-node quadrilateral) which are
available for use in the SAMSONZ code (1). SAMSON2 is a dynamic

nonlinear two~dimensional finite element computer code which was

developed at the I11inois Institute of Technology Research Institute
(IITRI) for the Air Force Weapons Laboratory (AFWL) located at Kirtland
AFB in Albuquerque, New Mexico. SAMSONZ is wused to solve
structure-media interface (SMI) problems and problems which involve
large displacements, large strains and nonlinear material behaviors.

In analyses performed previously at the AFWL, it was found that the
solutions obtained by using the higher-order elements (HOE) were

anomalous. It was concluded that these anomalous results were caused by

inconsistencies in the HOE formulations. Hence, use of the finite
element 1library of elements for SAMSON2 by the AFWL is limited.
Therefore, the overall objective of this research was to rectify this
situation by modifying and correcting as necessary the HOE formulations
so that consistent and reliable results can be obtained. In addition,
by using the HOE, it was believed that solutions may be performed more
efficiently with improved accuracy and fewer elements compared to
solutions with the four-node quadrilateral continuum element now in use

by the AFWL.
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Three tasks were undertaken 1in order to attain the desired

objective of this research, The first task was to study previous work
performed with the use of the HOE. The reason for this study was to
acquire background information as to where possible problems may exist
in the HOE formulations. The second task was to perform finite element
analyses on various problems using the HOE available in the SAMSONZ
code. The solutions of these problems were studied and compared with
analytical solutions in order to determine if the correct solutions were
obtained. The complexities and the types of the problems which were
selected were varied in order to fully test the HOE algorithms. The
third task was to investigate the developments of the HOE algorithms in
the code. These formulations were checked for validity and, if errors
were identified, corrections for these errors were postulated. The
eight-node quadrilateral formulation was the only one investigated
thoroughly since the eight-node guadrilateral is the most important HOE
to the AFWL for analysis purposes. The five- and six-node triangular
elements are essentially used only for transitions from eight-node
quadrilaterals to four-node quadrilaterals and were therefore considered
less important for this study.

After the completion of these three tasks, the results were
compiled and are discussed in this report. In addition, modifications

to the HOE formulation are suggested and detailed along with conclusions

based on these results.
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Previous Investigations Associated With the Higher-Order Elements g,
)
The only continuum element currently being used by the AFWL is the :
four-node quadrilateral (4NQ) because it is known to produce correct N
4.'.
-
solutions and because AFWL personnel are somewhat concerned about the :j'
accuracy of the solutions produced by the HOE. Due to this concern, a ;;
few investigations pertaining to the HOE have been undertaken. h
i
The content of this chapter provides a discussion of two of the 7
prior examinations of the HOE that were reported to the author. These o,
[ ]
investigations were studied in order to gain some insight into possible é"
problems associated with the HOE., Furthermore, the information obtained gl

27

from the studies was to be used as a starting point for the current

investigation.

IO
LU

The majority of the previous efforts toward investigating the HOE

AL

has been performed by Dr. Howard L. Schreyer (2) at the New Mexico

Engineering Research Institute (NMERI) in Albuquerque, New Mexico. W
Based on experiences involving the five-node and six-node triangular ‘h:
(5NT, 6NT) continuum elements and the eight-node quadrilateral (8NQ) E w
continuum element, Schreyer concluded that use of these elements has gg
yielded anomalous results. In addition, the matrix that relates stress ézﬂ
to strain (the B-matrix) and the internal force vector have been Z;;
investigated at NMERI and at the AFWL and have been accepted as being %*
correct. Based on th.s information, Schreyer's first approach in his E
investigation was to analyze the one-dimensional wave propagation E'\
4

problem shown in Appendix A (Case Al) of the SAMSON2 Users Manual (3) 2,
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using the 8NQ element avajlable in the SAMSON2 code. By performing this
analysis he found that at the second time step in the solution the
right-side nodes of the first element did not move as predicted.
Instead he found the corner nodes moved to the left (in the opposite
direction of the applied force) while the midside node moved to the
right. He also found this displacement pattern did not correct with
time. Based on these findings he concluded that the shape functions
installed in SAMSONZ for the 8NQ may not be appropriate and that strains
might be produced by rigid body motions. He then checked the 8NQ shape
functions for rigid body displacement and rotation and found no strains

were produced. After this check and with the results from the

one-dimensional wave propagation problem, he concluded there was a
different reason for the anomaly and began reviewing the internal force
computations and a modified system of shape functions. This last review
was never completed.

The only other reported work was conducted by Rod Galloway, an
employee at the AFWL. Doug Seemann, the AFWL project representative for
the current investigation of the HOE, stated that Rod had inspected the

HOE formulation in SAMSON2 and found no obvious errors. Unfortunately,
Rod's work was not documented.
Ooug Seemann also expressed some possible reasons why the HOE

formulation was not functioning properly based on his review of

W S s <
.."f.'-"‘-'\.'\n' Py

Schreyer's work (4). He stated that tne element in question might have
been unstable due to the fact that the finite element discretization and
problem input were poorly defined. He also believed that approximations

used in the element formulation might be causing an instability. If the

-
®
)
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problem were instability, he suggested three possible solutions: (1) 4
more accurate formulation (assuming approximations are causing the
error), (2) more rigid specifications on how !0 use the elements and

(3) a better scheme for determining a stable time step.
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CHAPTER 3

Finite Element Analyses

For this study, various problems were selected, modeled and
analyzed using the higher-order finite elements in the SAMSON2 computer
code (1). Most of the problems chosen had known analytical solutions so
that the results generated by SAMSON2 could be examined and evaluated
for errors,

There were two purposes for analyzing these problems. First, the
capabilities of the HOE were to be thoroughly explored. Second, these
analyses were to be used to discover possible errors in the HOE
formulation used in the SAMSON2 code. These two goals were obtained by
varying the complexities and the types of problems which were analyzed.

The B8NQ continuum element was given the main emphasis in the
analyses with only minimal use of the 5NT and 6NT continuum elements,
The 4NQ continuum element was also used for comparison purposes,
especially for problems without analytical solutions.

The problem configuration, loading, and material parameters are
provided in the succeeding sections along with a description of each
test problem. Pertinent results are also provided. Examples of input

data are provided in Appendix A for each problem.

3.1 One-Dimensional Wave Propagation

A uniform bar subje.ted to a dynamic axial load was chosen to test
the solution involving one-dimensional wave propagation which was

obtained with the use of the 8NQ. The bar problem was selected for

SRR LR ER TN C\ Y 0
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analysis because Dr, Schreyer (2) had wused it in his previous

investigation of the higher-order elements, and, therefore, the results
and observations from his work could be verified. The one-dimensional
problem was also used in Appendix A of the SAMSON2 Users Manual (3) to
test the 4NQ.

The geometric configuration of the uniform bar can be seen in
Figure 3.1 along with some of the input parameters and the load used in
the analyses. The load which was used was a displacement function
applied tc the left boundary of the bar. The nodes on the left and
right boundaries of the bar were fixed in the vertical (y) direction and
free in the horizontal (x) direction. The remainder of the input used
for tﬁe analyses is given in Appendix A. This input is identical to
that in Reference 3 for the 4NQ. The input required for the 8NQ for
this problem is slightly different than the input for the 4NQ. The
input for the 8NQ solution required an order of integration which was
chosen as 2.0 for this analysis. The bar problem was analyzed
dynamically (undamped) using an elastic plane strain material model.

The discretizations used in the analyses of the one-dimensional
wave problem were 16-4NQ elements with 27 nodes and 16-8NQ with 69 nodes
both divided into 2 rows of 8 elements. The 4NQ discretization was the
same as Case Al mentioned previously. Hence, the same number of 8NQ
elements were used since two rows of elements were desired with each
element having an aspect ratio (ratio of length of element to height) of
1.0. The same discretization was used for each ana’.sis since the
relative improvement in the results by increasing or decreasing the

number of elements was not important in this study.
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a) Geometric Configuration
0.25 sec (time step)
1.0 dyne/cmz (modulus of elasticity)
1.0 dyne-secz/cm4 (mass density)
0.0 (Poisson's ratio)
0.0 (damping ratio)
b) Input Parameters
i. 2¢e e R
TIME (SEC)
c) Applied Load
Figure 3.1 One-Dimensional Wave Propagation Problem
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The results generated by SAMSONZ for this wave propagation problem
were compared with the results of the corresponding analytical solution
which can be found in either Appendix A of the SAMSON2 Users Manual
(with w = %E) or Clough and Penzien (5). The first observation made
when comparing the 8NQ solution with the analytical solution was that
Schreyer's statements were only partially true. The right-side corner
nodes of the first element did displace to the left (negative sense)
which is opposite to the applied force. But, contrary to what Schreyer
observed, these nodal displacements did change to the predicted
direction (in the direction of the applied force) in time (15 time
steps). A similar displacement pattern also occurred for other nodes.
The magnitudes of the initial negative displacements had minimal effects
on the final results as can be seen in Figure 3.2, It has been
concluded that these initial negative displacements were caused by
numerical dispersion and were inherent iﬁ the 8NQ shape functions and
element formulation.

Additional results can be seen in Figures 3.3-3.7. The results for
the 4NQ and the analytical solution are identical to those shown in
Appenaix A of the SAMSON2 Users Manual. The 8NQ results compire with
the analytical solution quite well, except for the oscillatory numerical
dispersion present. Only one displacement graph is given which is
representative of all the other displacement graphs. All displacement
graphs showed similar degrees of correlation between the 8NQ and the
analytical solution results. The displacement and stress graphs have
the best agreement between the 8NO solution and the analytical solution,

while the velocity graphs displayed a greater amount of dispersion.
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Cne conclusion, based on the results generatec by SAMSONZ, was that
__E the 8NG elemert is satisfactory for use in the one-dimensional wave
-'.i propagation problem for which a dynamic elastic solution was performed.
_’ The only discrepancies in any of the results which should be noted
, existed in the values for the deflections, velocities, and stresses in
_\_: the y-direction at points where the 4NQ solution and the 8NQ were
compared. However, the magnitudes of these discrepancies were
"\\i insignificart,
\ Sore other conclusions that were obtainred include: 1) the
: formulation for the 8NQ has some inherent problems, and 2) the solution
fi obtained with the 4NQ was more efficient than that obtained with the
o 8NQ. The CPU time for the 4NQ solution was 7.20 secs. compared to 24.33
I secs. for the 8NQ.
-
3.2 Cantilever Beam
'; A problem involving a cantilever beam was solved in order to verify
E_E the formulation for the 4NQ which appears in both the SAMSON2 Users
'.;2 Manual and the STEALTH and SAMSON2 Verifications Manual (6). Hence,
o this beam problem is used to test the performance of the 5NT, 6NT, and
:-Ej 8NQ elements in flexure when analyzed both staticelly and dynamically.
:'j' The geometric configuration of the cantilever beam can be seen in
" Figure 3.8 along with a sample of the pertinent input data and loads
::3 used in the analyses. The nodes on the left boundary were fixed in both
:: the x- and y-directions. The maximum stable <ime step for the JNQ
‘ discretization was obtained by trial and error (based on successive
: unsuccessful computer executions) until a sati:zfactory solution was
s
iy
n
N
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3 L= 16 ft 1
3 N
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p— X ‘s
a) Geometric Configuration y
4
At = 3.4E-5 sec (time step) :
E = 4176.0 x 106 psf (modulus of elasticity)
) = 16.0 1b-sec2/ft4 (mass density)
v = 0.0 (Poisson's ratio)
yoo= 0.0 (damping ratio)
C1 = 1000 (mass proportional damping)
b) Input Parameters
4
100-0_4,_— — o
‘®
f=5
- o= —— dynamic
= — gtatic
3
0.0
+ -A/ + —
c.0 3.1E-3 1.0
t. sec

¢) Applied Load

Figure 3.8

Cantilever Beam Problem.
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obtained. Once chosen, the same time step was used for all of the
b analyses. Mass proportional damping (Cl) was used to obtain the static
g
fE solutions by dynamic relaxation techniques (3). The beam was subjected
1}
™,
to a static and a dynamic uniformly distributed pressure load. A short
% rise time was used for the static analyses in order to reduce the time 4
ﬁj required for convergence to the sSolution. The material law for a state
of biaxial elastic-plastic plane stress was used in the analyses with
N Poisson's ratio equal to 0.0. An order of integration of 2.0 was chosen
~
E for the 5NT, 6NT, and 8NJ. Examples of the remainder of the input data
S
Ay used for the static analyses are contained in Appendix A. Only two
j‘ changes were made to this input data in order to execute the dynamic
a ana1y§es. The first change was the removal of the mass proportional
o damping factor from the input. The second change was to eliminate the
; short rise time in the static loading curve in order to make it an
>
. instantaneous dynamic load.
b ,.:
The finite element discretizations used for the analyses of the
2: cantilever beam are shown in Figure 3.92, b, ¢ and d. The 4NQ grid was
'ﬁ? based on the example problems in the SAMSON2 Users Manual. The element
4 dimensions were selected to be 1 ft x 1 ft in order to maintain an
- aspect ratio equal to one as recommended in Reference 6. The 8NQ
2: discretization was selected such that one 8NQ element replaced four 4NQ
‘.
4 elements. This ratio of one 8NQ to four 4NQs was chosen so that the
?' same number of stress and strain calculations for the two discretization 5
‘f: would be performed. Hence, the efficiencies of the two solution schemes f
3 could be compared. The aspect ratio for the 8NQ was aiso 1.0. The .
2 discretizations for both the SNT and 6NT contained 32 elements.
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Finite Element Discretizations.

Figure 3.9 Cantilever Beam Problem:
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Figure 3.9

d) 6NT Elements

Cantilever Beam Problem: Finite £lement Discretizations
(Continued).




2.

Therefore, the number of SNT and 6NT elements used in the analyses was
twice the number of 8NQ elements and one-half the number of 4NQ
elements. Fewer triangular elements (5NT and 6NT) were selected
compared to the number of 4NQ because the order of integration was
greater for the S5NT and 6NT than for the 4NQ. Once selected, the
discretizations used in the analyses were never changed.

The results of the static analyses for each of the four element
discretizations were compared to the corresponding analytical solutions.
These solutions were obtained with the use of basic principles of
mechanics (7). The maximum y-displacements (ymax) obtained from the
computer analyses were compared to the theoretical value computed from

the following equation:

Ymax T g%; - %?%E (3.1)
where,

w = 200.0 Tb/ft

L = 16.0 ft

E = 4176.0 x 10° psf

[ = 10.667 ft?

A= 8.0 ft?
therefore,

Ypay = -0-3908 x 107% ft

This value for the maximum displacement was computed at x = L and
included shear deformation effects. Table 3.1 shows the comparison
between the results generated by SAMSON2 for the maximum y-displacement

and the value computed using the analytical solution.
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Table 3.1 Comparison Between the Results Generated by SAMSONZ for
the Maximum Y-Displacement and the Corresponding
Anatytical Solution.

Analytical Percent Difference
Solution Based On )

Element SAMSON2 -4
(ft x 1077) Analytical Solution

Type ymax(ft x 107

)

ymax
-0.4067 (Node 51) -0.3908 4.07%

4NQ
8NQ
SNT -0.3535 (Node 35) -0.3908 5.54% X

-0.3861 (Node 43) -0.3908 1.20%

' ENT -0.3858 (Node 51) -0.3908 1.28%

The results for the 4NQ, 8NQ, and 6NT elements as seen from Table 3.1

differed only slightly when compared to the value obtained from the

analytical solution, The S5NT element results were not acceptable as

they varied from the analytical solution by more than 10%. A comparison

between the analytical and SAMSON2 solutions for normal stresses (ox) R

was also performed. The normal stress values used for comparison were k

computed analytically using the following equation:

. (100x% - 3200x_+ 25,600)y (3.2) :
I . ‘o

X X _:

M = moment in the beam at any distance x (measured from the left
end of beam) 0.0 < x < 16.0,

y = distance from the neutral axis (H.A.) of the beam
-2.0 <y < 2.0, and

1 = moment of inertia of the cross-sectional area of the beam with
respect to the x-axis.
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Table 3.2 shows some of the comparisons made between the computed ncrma’

stresses from Equation 3.2 to those computed using SAMSON2. As before,

the results for the 4NQ, 8NQ, and 6NT elements compared well, but*

wre s e

results for the 5NT did not. Normal stresses for other elements in the

Ny e

meshes were compared, but are not shown here, Similar observations for

L )

the stresses in these other elements were made witn regard to the four

different element discretization solutions.

v The results from the dynamic analyses were also compared to the

corresponding analytical solution and are shown in Figures 3.10 to 3.17

R R AR Rl TR

and Tables 3.3 and 3.4. The analytical solution for the displacement

response at the free end of the cantilever beam was generated using

Equations 3.3, 3.4, and 3.5 (8). These equations are for the elementary

P g ol % I

4 case and do not include shear distortion and rotary inertia or

axial-force effects. These three quantities were omitted to simplify

the soluytion,

WY 5"«

n§1 0 (x) ¥, (t) (3.3)

Vix,t)

where,

S S e

Vix,t) displacement response at any x for any time t,

o (x) vibration shape at any x for mode n, and

n
Y (t) = amplitude of vibration for mode n at any time t. Iy

[}

. - N “.
°n(x) (cosh ax - cos anx) - Cn(s1nh a x - sin anx) (3.4)

where,

+
cos anL cosh anL

C = — - .
+
n sin anL sinh anL

................
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x = distance from fixed end, and
3 = 1.875/L , a, = 4,694/L , and ay = 7.855/L.
PO In
Yn(t) = = (;—7)(1 - ¢os wnt) (3.5)
m n
where,
Po = constant value for the uniformly distributed load (1b/ft),
m = constant value for mass per unit length (lb-secz/ftz),
L
Of @n(x)dx
In =T I1 = 0.7830 , 12 = 0.4340 , I3 = (.2589,
! G%(x)dx
0
, an El
wy ¥ = frequency of vibration for mode n;
m
wy = 256.18 , wy = 1605.59 , wy = 4,496.16, and

t = time in sec.

The first three modes of vibration (n=1,2,3) were used to predict the
displacement responses of the cantilever beam as shown in Figures 3.10
and 3.11. As shown in these fiqures, the analyses using the 4NQ, 8NQ,
and 6NT elements all overestimate the results from the analytical
solution. In addition, the response of these elements has a longer
period of vibration relative to that of the exact solution. The
opposite is true of the SNT element response, i.e., the S5NT solution
underestimates displacements and has a shorter period of vibration. The
4NQ and the exact solution correspond to what 1is presented in
Reference 3. A numerical comparison of the average peak values for the

displacements for each curve in each figure can be seen in Table 3.3
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Table 3.3 Comparison of Average Values of Peak Displacement and
Average Periods of Oscillation for the Curves Shown in
Figures 3.10 and 3.11.

1 2 3
Percent
Percent Difference
Average Value Difference When Compared to Average
of Peak Based on 2 Times Static Period of
Soluticn Displacement Analytical Displacement Oscillation
Type (Fr x 10°%)  Solution 4 5016, 1079 (sec)
Analytical -0.7403 -~ --- 0.0248
anQ -0.8238 11.3% 5.4% 0.0259
8NQ -0.7793 5.3% 0.3% 0.0255
SNT -0.7134 3.6% 8.7% 0.0219
ENT -0.7810 5.5% 0.1% 0.0254

along with the average periods of oscillation. In this table, the first

"comparison was made between the average peak value for the exact curve

and each of the other four curves. These results were different than
those obtained from the static analyses in that the 5NT element solution
exhibited the best correlation to the analytical solution. It was
concluded that this good correlation resulted from neglecting shear
distortion in the analytical solution. Another comparison was performed
between a dynamic displacement response value equal to two times the
static displacement and the average peak values from each of the other
four curves. The conclusions from this comparison were similar to those
from the static solution, and, hence, the results from the 4NQ, 8NQ, and
6NT element solutions are acceptable. The periods of vibration for

these three element types were also in gcod agreement with those of the

DO L SRR
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exact solution. The S5NT element solution had the largest discrepancies

in columns 2 and 3 of Table 3.3, but the solution was acceptable based

on column 1 in which shear distortion was neglected. The dynamic normal
stress (ox) responses generated for the four element types were also
studied. The following equation was used to compute the stress response
values that were used to compare with the output from the analyses using

the four different element types:

o (xit) By T () Yy(t) (3.6)
n=

where,

" _ .2 . .
on(x) = a, [(cosh a X + €os a x) - Cn(s1nh a x + sin anx)].

Curves showing the variation in the maximum stress and the stress at

midspan (same locations and elements as in the static analyses) for each
element type are given in Figures 3.12 to 3.17. The results are similar
to those from the static analyses and the displacement response
comparisons. The 4NQ, 8NQ, and 6NT element solutions agree well with
the exact solution, but the SNT solution does not agree with the
analytical solution as well. Table 3.4 shows the comparison between the
peak stress values for each element type relative to the exact solution,
The 6NT and 8NQ higher-order elements agree with the exact solution the

best. The 4NQ element solution is acceptable, but the 5NT element gives

the worst correlation to the exact solution.
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The execution times (CPU times) were recorded for each analysis of
the cantilever beam in addition to the results presented previously.
These CPU times were used to determine the relative efficiencies of the
solutions using the four element types. Table 3.5 shows a
representative sample of the CPU times obtained from the analyses. As
shown, the 4NQ element solution was two to three times more efficient
than the three HOE solutions. These significant increases in CPU time
for the HOE solutions as compared to the 4NQ solution were attributed to
the following: (1) more terms are included for each calculation
involving the shape functions for the HOE due to the increased number of
nodes per element, (2) more subroutines are used in the HOE solution
schemes, and (3) the 5NT and 6NT element solutions involve twice as many
stress calculations as the 4NQ element solution. It should be noted
that these three conditions more than offset the time saved by the
reduction in the number of the nodes resulting from the use of the HOE.
Based on the third condition, if the same number of stress calculations
were performed, an increase in CPU time of between 50 and 75 percent
would be expected for the SNT and 6NT element solutions when compared to
the 4NQ solution,

Some- general conclusions which are based on the results presented
in the previous paragraphs, are as follows. The 6NT and 8NQ
higher-order elements and the 4NQ element give correct solutions for
both static and dynamic analyses for a problem involving flexural
response with an elastic plane stress material law. Solutions involving
these two HOE showed more accurate results with fewer nodes and elements

than the 4NQ element solutions, but were much less efficient (more
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Tabie 2.5 CPU Time Comparisons for the Four Element Types Used in s
the Analyses of the Cantilever Beam. .
Element Type CPU Time Percent Difference Based ?
(secs) on 4NQ Solution :
4NQ 105.0 ——- '

8NQ 224.1 113.4% -

SNT 317.0 201.9% f

6NT 339.8 223.6% 3
5

expensive). The decrease in the accuracy of the 4NQ element solution is

due to the under-integration inherent in the formulation of this element _i
as it exists in the SAMSON2 code (3). The 5NT element results varied i
greatly with respect to results from the other three elements for both :
the static and dynamic cases, except for the maximum dynamic displace- j
ment which compared well to results from an analytical solution which E~
neglects the effects of shear deformation. These poor results were E
believed to be due to the fact that the SNT element is not an entirely ::
linear strain triangle because it only has two quadratic displacement i
sides. This fact could cause the SNT element to behave in a manner N
similar to a constant strain triangle in that a soft response might %
occur which could only be corrected by increasing the number of elements E:
used in the aralysis (3). Another possible cause of the poor results i
exhibited by the 5NT element was the position of the midside nodes in f
the SNT elements. For the analyses which were performed, the midside Eﬁ
nodes were positioned on the hypotenuse and on one side of the triangle. &
A different discretization was devised with the two midside nodes being -
)

)
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on the two sides of the triangle and not on the hypotenuse. A solution
using this different discretization involving the nodes on the two sides
was attempted, but no output was obtained because of an incompatibility
(zero area was computed by the program) between the input and the
corresponding formulation of the GSNT element which could not be
resolved. A final note on the 5NQ element is that this element did
produce some acceptable results when compared to the analytical
solution. Therefore, it might be possible to make use of this element
for the transition from an 8NQ element to a 4NQ element as it was

intended.

3.3 Soil-Structure Interaction

Based on the results for the HOE solutions from the previous two
sections, especially the results for the 8NQ element, a more complex
problem was chosen in order to further check the performance of the 8NQ
element. A problem involving soil-structure interaction, the type of
problem for which SAMSON2 was designed, was chosen. For this problem,
no analytical solution {is available and all of the BNQ results were
compared to those obtained by using the 4NQ. Although this comparison
may not appear to be very practical, it gave a qualitative measure of
the performance of the 8NQ element for this problem. The 4NQ has been
shown by personnel at the AFWL to be reliable and accurate for similar
soil-structure interaction problems when compared to actual test data.

The configuration of the soil-structure problem is shown in

Figure 3.18a, b and ¢ along with some input data and the primary load
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b/—Axis of Symmetry

1

Fiber Reinforced Concrete Cylinder

Structure~Media Interface (Slideline)

Yuma Soil

8 ft

a) Problem Configuration

- At = 1.0E-6 sec (time step)
P = .2516E-3 lb-seczlin4 (mass density of concrete)

X c :
I .173E-3 lb-secz/in4 (mass density of soil) x
3 E = .42E7 psi (modulus of elasticity of .
' ¢ concrete) :
E, = .158E7 psi (modulus of elasticity of soil) f?
Ve *® 0.24 (Poisson's ratio for concrete) \
Ve F 0.38 (Poisson's ratio for soil) o
j u = 0.01 (damping ratio)

b) Input Parameters

Figure 3.18 Soil-Structure Interaction Problem.
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(nuclear airblast) used in the analyses. This problem is a scaled
version of one which was analyzed and experimentally tested by the AFWL.
The structure is a fiber reinforced concrete cylinder surrounded by Yuma
soil separated by a structure-media interface. The input data
pertaining to the two materials were obtained from AFWL material models.
Additional input data are contained in Appendix A. Also, the slideline
data are from the AFWL bilinear failure surface model for Yuma soil and
fiber reinforced concrete. An integration order of 2.0 was used in the

8NQ analyses. The load curve was obtained from an actual test performed

‘)l " 'A Il "I -‘ -.‘

by the AFWL and was estimated for use in the analyses with the use of

the NMERI Speicher/Brode Nuclear Airblast Curve algorithm based on a

'-l."u.(\.lt.' "

peak pressure of 50 ksi and a yield of 225 kt.

('Y

In the analysis of the soil-structure problem, the nodes on the
bottom boundary of the soil field were not allowed to displace in the

y-direction, while those on the right boundary could not displace in the

A
"
9
i
o
o
o
\

x-direction. The lower right corner node was fixed in both the x- and
y-directions. The problem was analyzed dynamically wusing an

axisymmetric material law developed by the AFWL. The law is called the

PAYYSYALYS

AFWL "engineering" model and was primarily designed to model soil
behavior.- It is defined by a piecewise linear hydrostat (a plot of

hydrostatic pressure vs. volumetric strain) for which the critical

AT NN T AT

identifying points are given as part of the input data (3). Strain
softening and dilation cannot be modeled by the AFWL "engineering" law.
Therefore, the hydrostat curve must be monotonically increasing (strain
hardening) (6). It is important to note that the soil-structure problem

should be analyzed in three dimensions in order to obtain the most
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accurate results. However, SAMSON2 is a two-dimensional code, and,

therefore, this problem was analyzed axisymmetrically with SAMSON2.

The soil-structure interaction problem was discretized separately
into 4NQ and 8NQ elements for the analyses. The initial finite element
mesh for the 4NQ consisted of 216 - 6 in. x 6 in. elements (204 soi)
elements, 12 concrete elements) and the initial mesh for the 8NQ
consisted of 54 - 12 in, x 12 in. elements (51 soil elements, 3 concrete
elements). These meshes contained relatively large elements (a coarse
discretization) in order to keep the CPU times as short as possible,
especially for the 8NQ solutions, and because only qualitative results
were desired for comparison purposes. The 8NQ discretization was chosen
such that one BNQ element replaced four 4NQ elements. Therefore, a CPU
time comparison could be made as was done for the cantilever beam
problem.

A qualitative comparison was performed between the two solutions.
In making this comparison, the principal values considered were the
displacements and accelerations in the y-direction for all the nodes in
the concrete cylinder as well as for a representative number of nodes in
the soil. Also, the stresses in the y-direction (oy) were considered
important’for all elements in the concrete and for a typical number of
soil elements. The values for these three output parameters were
studied, both qualitatively with regard to their variation in response
with time and numerically.

The comparisons for the initial (coarse) meshes rendered very few
acceptable results. In general, the results obtained from the 8NQ

element solution using the initial coarse mesh in the concrete
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(Figure 3.19b) exhibited a significant amount of variation. For
instance, the upper right node in the structural mesh (node 202) had a
y-displacement value three times that of the other two adjacent nodes
(nodes 200 and 201) at the end of the tenth time step (the first time
step for which output was obtained). This variation was thought to be
due to one of three conditions: (1) the mesh which was used was too
coarse, (2) instability existed in the solution, or (3) the slideline
calculations for the B8NQ element were in error. The 4NQ element
solution, in contrast to the 8NQ solution, had very consistent results.
In fact, the top three nodes in the coarse 4NQ finite element mesh of
the concrete cylinder (nodes 242, 249, and 256 in Figure 3.19a) had
equal values for both the y-displacements and y-accelerations at the end
of the tenth time step. The stresses for the 4NQ solution were also
consistent, while those for the 8NQ were erratic due to the unequal
y-displacements and y-accelerations of the upper nodes. A comparison of
the values for the y-displacements, y-accelerations, and stresses in the
y-direction (cy) was performed at the end of the tenth time step. The
y-displacement and y-acceleration values for nodes 242 and 249 in the
4NQ mesh were twice those of nodes 200 and 201 in the BNQ mesh, while
the values for node 256 in the 4NQ mesh were significantly less than
those for node 202 in the 8NQ mesh. A comparison of stresses between
the top element in the 8NQ mesh (element 54) and the top four elements
in the 4NQ mesh {(elements 209, 210, 215 and 216) showed an acceptable
correlation for only one stress value. The stress at the upper right
integration point of element 54 was within 12% of the stress in element

¢, The normal stress (cx) also compared well at this location. The
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shearing stresses in the 8NQ solution at the tenth time step were
significantly higher than those from the 4NQ solution. These large
differences in the shearing stresses as well as for the other stresses
resulted from the large numerical discrepancies in the y-displacements
at the top of the 8NQ mesh. The other nodes in the 8NQ mesh behaved
much the same as the top row of nodes, but exhibited one additional
trend which was previously discovered in the one-dimensional wave
propagation problem. Many of the nodes located below the second row of
nodes in the 8NQ mesh (nodes 198 and 199) displaced upward (positive
direction) which is opposite to the direction of the applied blast load,
while the corresponding nodes in the 4NQ all displaced downward
(negative direction).

The 8NQ solution was corrected with time as in the wave propagation
problem, but only to a certain extent. Most of the nodes in the
structure did reverse directions by the end of 400 time steps. The
y-displacement values for nodes 200, 201 and 202 did tend toward the
same value, but the y-displacement for node 202 was still greater. The
y-displacements for the nodes on the right vertical boundary (slideline
nodes 202, 199, 197, 194, 102, 189, and 187) were, in most instances,
greater than the y-displacements for the corresponding nodes to the left
of the slideline. Stress values (oy) at similar levels within the
structural mesh were approximately equal (consistent at these levels) at
certain times during the solution, but this consistency was not observed
on a regular basis. Oscillations (wave propagations) were apparent
throughout the solution as was shown in the plots of y-accelerations,

stresses in the y-direction (cy), and y-displacements in the SAMSON2
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output. Results from the soil elements were consistent for the entire »
by
time of solution. Eﬁ,
Lot
Quantitative comparisons of results between the 4NQ solution E;
I
(solution remained consistent with the nodes being almost egual for each ;ﬁ
individual row, but those on the slideline displaced slightly more than f%
~
the others) and the 8NQ solution were performed at every tenth time step ;Z;
in addition to a qualitative overall comparison. Some numerical i:
)
comparisons showed acceptable results, while the majority of the results ;;
compared poorly. The y-displacements for the top two rows of nodes in L
the soil were within 8% of each other at t = .2E-3 (200 time steps), but >
.:,‘
deviated by up to 37% at t = .4E-3 (400 time steps), respectively. The o
ot
best soil stress correlations differed by 17%. Stresses in the concrete ﬁ?
.-\‘.
cylinder, particularly oy' matched well at certain times, but varied ;'
of
with the propagations of the waves through the structures. Therefore, o
N
this correlation of stresses might have been by coincidence more than ?:i
o
anything else. The large shear stress discrepancies discovered at the 5;
N
tenth time step were significantly reduced with time., Qualitatively, ;*
'-
both solutions displayed the wave propagation phenomenon throughout the t:,
Wy
structure, but the 8NQ solution was trailing that of the 4NQ as if the ;“
o
wave speeds in the two were gquite different. The plots of the :E
?u
y-displacements in the SAMSON2 output for the 4NQ solution showed the ;:
N
wave propagation interaction more than those for the 8NQ solution. In :‘
. W
general, the nodal displacements for the corresponding rows are .f
qualitatively similar such that the displacements are .arger for nodes :i’
)
s
closer to the slideline. The values for the nodal y-displacements from ;~
the 4NQ solution are greater than those from the 8NQ solution, except in ;a.
"
)
N
»
%
‘ LY
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the top row, even though at certain times there was good agreement
between corresponding values.

Many variations in the solutions were attempted in order to improve

TS NN Bt Ay &

the results stated in the previous paragraphs for the initial 4NQ and
8NQ coarse discretizations. The variations to the input ware as
follows:
(1) energy error output was requested for the two solutions
to determine if unstable conditions were present,
(2) the slave nodes were reordered in the slideline in an
attempt to eliminate the erratic behavior present in the
8NQ solution,
reduced loadings were applied to reduce the possitility
of instabilities occurring in the solution,
finer mesh discretizations of the concrete cylinder were

used in the 4NQ and 8NQ solutions, and

Y W 8

(5) the order of integration was increased to 3.0 for the 8NQ
"solution.

The results from requesting the energy error output are shown in

PEEXA AL

Figures 3.20 and 3.21. These figures, if assumed reliable based on the

findings of Berglund and Rudeen in Reference 6, show that both solutions

are unstable because the energy error exceeds 1% (1, 9). In

Reference 6, it was pointed out that the energy terms calculated in
SAMSON2 are either in error or incomplete and need to be corrected. In
the current study, assuming the results from the Figures 3.20 and 3.2l
to be reliable, the possibility of excessive distortion was investigated

in orcer to determine if the 8NQ formulation was still valid (11). No
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apparent excessive distortion was located during the current study.
Upon investigating the possibility of excessive distortion, a study of
time step sizes versus changes in the solutions was performed. The time
step size was halved, and then halved again. No apparent changes
occurred in either of these two solutions., Therefore, the solutions
were considered to be stable, especially since Figures 3.20 and 3.21
show the 4NQ solution to be more unstable than that for the 8NQ for the
same time step size. It was found in the execution of the cantilever
beam problem that the stable time step for the 8NQ solution was less
than that which could have been used in the 4NQ solution., An additional
note to this information 1is that the curves for each of the energy

components (kinetic, internal, and external work) displayed the same

patterns.

The second variation in the input that was performed in an attempt
to improve the 8NQ results when compared to those obtained for the 4NQ,
was a change to the order of the slideline nodes. This change was
performed due to a phone conversation with personnel of the AFWL (4).

The actual change was just a reversal of the order of the input for the

9 slave nodes. Instead of inputting the nodes from top to bottom, they
E;f were input from bottom to top so that the first slave node was adjacent
Ezz to the last master node on the slideline. The result of this change was
o{' very minor and affected mostly the lower nodes of the structural meshes.

No relative improvement in results was obtained.

The third variation was the application of a reduced load in order

.'.n..' '.’\‘.': Ny N

to lessen the chance of instabilities occurring as well as to make the

solution perform more elastically with l1ittle or no plastic flow. The

Z555%5) d
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first loac variation was the blast load reduced by a factor of 500 (peak

pressure of 100 psi in place of 50,000 psi). The results obtained for
the initial structural meshes with this applied load were no better than
those for the originally applied airblast load. The same trends in the
nodal displacements existed in these solutions as in the previous ones.
Another solution was executed with the 100 psi load reduced to a peak
value of 1 psi and twice the run time used in each of the previous
solutions. The solution time was doubled in order to determine if the
8NQ solution would converge further. The results from the solution
using the 1 psi load and the double run time compared well with those
obtained with the use of the 100 psi load, such that at time t = ,4E-3
(the total run time for the 100 psi solution) all results differed by a
factor of 100 which was the same ratio between the two applied loads.
These results showed that the two solutions which were obtained with the
use of the reduced loads were both stable and in the elastic range as
was desired in these analyses. The remainder of the results (from t =
.4E-3 to .8E-3) for the 1 psi peak load revealed the following:
(1) The nodes on the slideline in the two solutions no longer
had the largest values for the y-displacement, but
instead the displacements got larger in proceeding toward
the left side of the structural mesh along a row. This
behavior was opposite to that found for previous
solutions. The slideline nodes acted as if they bhad
reached a limiting state. This new displacement pattern
was found throughout the entire 4NQ mesh and in the top

two-thirds of the 8NQ mesh.
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{(2) Some better comparisons were obtained between the two
solutions for values of nodal displacements and elemental
stresses. But, as before, these good results were only

obtained for particular locations and not throughout the

structural meshes.

(3) The 8NQ results were much more consistent and reacted
more like the 4NQ solution. A1l y-displacements for the
8NQ structural mesh (coarse) were downward after 680 time
steps (t = .68E-3).

The fourth variation undertaken to further improve the results
between the 4NQ and 8NQ solutions was new discretizations of the
structural meshes using more nodes and elements. These new
discretizations were done in order to determine if the element sizes in
the two initial structural meshes caused the discrepancies in the
results shown previously. The first new discretization involved an
increase in the number of nodes and elements in the 8NQ structural mesh
(the finer mesh in Figure 3.22b). An analysis using this finer mesh and
the 1.0 psi peak load was executed. The outcome from this analysis was
much more consisteﬁt (displacements [stresses] within the structure were
approximately equal at similar levels in the mesh) compared to prior
analyses. Qualitatively, this solution exhibited the same trends when
compared to the 4NQ solution for the 1.0 psi load performed previously.
When these two solutions were compared numerically at the same time
step, the values for the y-displacements for the 8NQ solution were an
average of 20% less than those for the 4NQ solution (stress values were

correspondingly less also). Table 3.6 shows values for the
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Tahle 3.6 Comparison of Y-Displacements Between the 8NQ Solution 3
(Finer Mesh) and the 4NQ Solution for a 1.0 psi Peak
Load.
Percent §
Original 8NQ 4NQ Difference
Node Location Y-Displacement Y-Displacement Compared to
x-coordinate y-coordinate t=.8x10"3 sec  t=.8x103 sec 4NQ f;
(in) (in) (in x 107%)  (in x 107%) t=-8x1077 sec
0.0 72.0 -.1927 -.2112 8.8%
3.0 72.0 -.1851 --- ---
6.0 72.0 -.1749 -.2009 12.9%
9.0 72.0 -.1633 --- ---
12.0 72.0 -.1678 -.1972 14.9%
0.0 66.0 -.1774 -.2073 14.4%
6.0 66.0 -.1699 -.1961 13.4%
12.0 66.0 -.1587 -.1912 17.0%
0.0 60.0 -.1618 -.1996 18.9%
3.0 60.0 -.1626 --- -==
6.0 60.0 -.1593 -.1878 15.2%
9.0 60.0 -.1550 .- .-
12.0 60.0 -.1463 -.1831 20.1%
0.0 54.0 -.1498 -.1949 23.1%
6.0 54.0 -.1421 ~-.1785 20.4%
12.0 54.0 -.1304 -.1710 23.7%
0.0 48.0 -.1343 -.1898 29.2%
3.0 48.0 -.1264 .- .-
6.0 48.0 -.1218 -.1711 28.8%
9.0 48.0 -.1183 .- .-
12.0 48.0 -.1161 -.1612 28.0%
0.0 42.0 -.0944 -.1788 47.2%
6.0 42.0 -.1095 -.1639 33.2%
12.0 42.0 -.1162 ~.1563 25.7%
3

y-displacements obtained from the two solutions at time t = .8 x 10~

sec (the last time step). A comparison of the two sets of values from
the two solutions resulted in a percent difference ranging between 9%
and 47% (average was approximately 20%). The reason for this

significant difference between the two soluzions for such a small

loading was not readily apparent to the author at that point in time.
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However, the reason was determined later in this investigation. Further
refinements were made to both the 4NQ anc 8NQ structural meshes (the
finer 4NQ mesh and the finest 8NQ mesh in Figure 3.22). These meshes
were then used in the analyses. The results from these new analyses
still produced a 20% difference between the two solutions. The two
finest meshes were then subjected to the initially applied blast load
(50 ksi peak pressure) to determine if a 20% difference between the two
solutions would still occur. The comparison of the results from these
two executions yielded a 15% difference between the same values of
y-displacement. It should be noted that the stress values could not be
compared at similar time steps due to the differences in the wave speeds
in the two solutions. One further observation involving only the 8NQ
solution was that the results were much more consistent compared to
previous analyses using the blast loading.

The fifth variation used in the analyses of the 8NQ solution was an
increase in the order of integration from 2.0 to 3.0. The integration
order for the 8NQ was increased in an effort to further reduce the
differences in values between the 4NQ and 8NQ element solutions. The
results occurring from this change showed no relative improvement in the
comparison between the two solutions.

Three conclusions and one related recommendation were made based on
the results of the analyses for the soil-structure interaction problem
using the 8NQ element. The first conclusion was that the 8NQ solutions
(those obtained using the two refined meshes in Figure 3.22b) produced
consistent results for the different analyses of a soil-structure

interaction problem involving an applied blast load and analyzed
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axisymmetrically using the AFWL "engineering" mode!. The results from
these solutions have not, as yet, been shown to be reliable. In fact,
these solutions were significantly different (15-20%) when compared to
those obtained with the use of the 4NQ element. These differences must
be interpreted carefully however, because the true reliability of the
8NQ solution has not been verified since no analytical solutions or test
data were available for comparison. The second conclusion was that the
energy formulation was in error. The third conclusion was that the 8NQ
element solutions were definitely obtained 1less efficiently than
analyses obtained using the 4NQ element. The 8NQ element solutions
required on the average 75% more execution time than those solutions
using the 4NQ elements. The reasons for this CPU time difference were
explained in the discussion for the cantilever beam. The one
recommendation was that the 8NQ element should be used by personnel at
the AFWL in an analysis of a soil-structure interaction problem for
which test data are available. The comparison between the test data and
this 8NQ element solution would give a measure of the reliability of the
8NQ solution. However, if the 8NQ is still found to be unreliable it
may be due to one of the following: (1) an error in the 8NQ
axisymmetric formulation, (2) an incorrect interaction between the
slideline and 8NQ formulations, or (3) an incorrect definition of
plastic flow in the 8NQ formulation. It should be noted that the
version of SAMSON2 used in the analyses in this study does not include
any updates in the slideline routines which have been formulated by the

AFWL in the last couple years.
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3.4 Additional Analyses

Two more problems were analyzed using the 8NQ higher-order element
(a 4NQ analysis was also performed for each) for which analytical
solutions exist. The first problem was a static analysis (dynamic
relaxation) of a fixed-end beam. This beam had the same dimensions and
discretization as the cantilever beam discussed earlier in this
investigation and was subjected to a concentrated load at the center of
the beam. The beam was analyzed using a biaxial elastic-perfectly
plastic plane stress (Poisson's ratio = 0.0) material law. This problem
was chosen for analysis in order to further determine the reliability of
a 8NQ solution after plastic flaw had been initiated. The sec.ad
problem was an axisymmetric analysis involving one-dimensional wave
propagation. The orientation of the geometric configuration for the
previous one-dimensional wave-propagation problem was rotated 90° for
use in the current axisymmetric analysis. The same element
discretizations (nodes renumbered) and material law were used for this
axisymmetric analysis. The same displacement function versus time was
applied to the lower nodes for this axisymmetric configuration. The
boundary conditions were changed to fixed in the x-direction and free in
the y-direction. This problem was selected in order to further test the
reliability of a dynamic axisymmetric 8NQ solution. The input data used
in the analyses of these two problems are in Appendix A.

The results from the 8NQ element analysis of the fixed-end beam
compared very well, both elastically and plastically, i. the analytical
solutions. The maximum y-displacement and normal stress values obtained

from the elastic 8NQ solution differed by 0.5% and 1.5%, respectively,
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when compared to values obtained from <calculations involving

Equations 3.7 and 3.8.

Ymax ~ 155%;; ¥ l&§x£L ~(3.7)
where,

P = peak value of the applied concentrated load (lbs),

L = length of the beam (ft),

E = modulus of elasticity for the beam (psf),

I, = moment of inertia about the x-axis (ft4).

G = shearing modulus (psf), and

A = cross-sectional area of the beam (ftz).

“WY  apx _pL

ox=rx_=(..8_-g_)¥; (3.8)

where,

Mx = moment at any distance x < % from the left side of the
beam (ft-1b),

X = distance to the right of the left side of the beam (ft),
and
y = distance above (+) or below (-} the neutral axis of the

beam (ft).

Other values for other locations within the beam also compared well.

The elastic-perfectly plastic 8NQ solution was not compared
directly to analytical solution values, but instead was compared
aualitatively to corresponding theoretical concepts and to the 4NQ
solution through observation of the stress pa*tterns in the 8NQ solutions

after the yield point value had been reached. The 4NQ and 8NQ solutions
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"G both exhibited local yielding for elements in their respective meshes

‘;E after the yield point value had been exceeded. The stress (cx)

éﬁ distributions for particular cross-sections of the beam were plotted

both before and after yielding and the results were compatible with

S; mechanics of materials principles (7, 11). The distributions for the
;EE elastic cross-sections varied linearly, while those for the

:. elastic-perfectly plastic solutions were constant for the top and bottom

}: portions of the beam with connecting linear variations. Another
%é observation made from the results was that redistribution in elemental ;
f: stresses occurred as a result of local yielding., The elements nearest

;S to the fixed-ends and nearest to the center of the beam had very small '
:E increases in stress values after the initial elastic load was increased,

’; while the other elements had much larger stress increases. This
;%; difference between the relative increases in stress values between the
:§ different elements was compatible with plasticity theory. Two other ]
" observations were made: (1) the y-displacements for the nodes at the :
; center of the beam for both the 4NQ and 8NQ solutions were much larger .
ﬁ; after yielding had occurred as opposed to the elastic displacements, and
e (2) the output values (displacements and stresses) were larger in the
;E 8NQ solution compared to those of the 4NQ due to the fact that the 8NQ

_E solution predicts higher elastic stress values because of the difference

j. in the order of integration between the 4NQ and 8NQ elements.

E The results for the axisymmetric analysis of a wave propagation

?S problem were compared numerically and qualitatively to the previous

. solutions (Section 3.1). Output values obtained from the current 4NQ
‘é solution (displacements, velocities, and stresses in the y-direction) /
. !
&
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were identical to the corresponding values from the previous 4NQ
analysis of the one-dimensional wave propagation problem (displacements,
velocities, and stresses in the y-direction). However, similar values
obtained from the current axisymmetric 8NQ solution did not compare well
with those from either the current axisymmetric 4NQ solution or the
previous one-dimensional solution. Figures 3.23, 3.24, and 3.25 show
representative examples of the deviations between the 4NQ and 8NQ
axisymmetric solutions. Similar deviations occurred between the two
solutions for other nodal y-displacement and y-velocity values as well
as for other elemental stress (cy) values. In comparing
Fiqures 3.23-3.25 to similar figures in Section 3.1, it was apparent
that the 8NQ solution lagged the 4NQ solution in the axisymmetrical
analyses, particularly in the displacement and stress plots. The
results from comparing these two axisymmetric solutions numerically at
the same time step were that the 8NQ values were around 15% less than
those from the 4NQ solution.

Two conclusions were made based on these results. The first

conclusion was that the 8NQ performed properly when used in a static

.
'y 'r v
PN

1%- elastic-perfectly plastic plane stress solution, Strain hardening was
:E not attempted since the elastic-perfectly plastic solution results were
Eﬁ so good. The second conclusion was that an error appears to be present
i; in the 8NQ axisymmetric formulation. This conclusion was made on the
ﬁg basis of resuits obtained from the current wave propagation analyses and
%g the axisymmetric analyses oy the soil-structure interaction problem.
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3.5 Summary of Results and Conclusions

Five different problems of various complexities were analyzed using
the current 8NQ higher-order element formulation in the SAMSON2 code.
The SNT and 6NT higher-order element formulations were also tested with
a cantilever beam solution.

The results from the analyses using the O5SNT, 6NT and B8NQ
higher-order elements were quite good overall. The 8NQ element results
compared exceptionally well with analytical solution values for the
dynamic elastic analysis of a one-dimensional wave propagation problem,
the static and dynamic elastic analyses of a cantilever beam problem,
and the static elastic-perfectly plastic analysis of a fixed-end beam
problem. Discrepancies in the 8NQ results were found in the dynamic
axisymmetric elastic-plastic analysis of the complex soil-structure
interaction problem and the dynamic axisymmetric elastic analysis of a
one-dimensional wave propagation problem. The 6NT element results
compared very well with values obtained from the analytical solutions
for both the static and dynamic elastic analyses of the cantilever beam
problem. The SNT element results compared poorly, in general, to
analytical solution values for the cantilever beam analyses. However,
some SNT values did compare well. In particular, the maximum value for
the y-displacement obtained for the SNT from the dynamic analysis of the

cantilever beam compared the best (compared to the values from the 6NT

A
X,

and 8NQ analyses) to the value calculated for an analytical solution

> .
NNy

which neglected shear ceformation, axial, and rotary inertia effects.

Further results showed that the solutions involving the higher-order
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elements were less efficient compared to corresponding 4NQ element
solutions.

Some difficulties were encountered prior to and during the
execution of the higher-order element analyses. The following is a list
of some of these difficulties:

(1) The mesh generation routine in SAMSON2 was not formulated

so that the meshes used in the higher-order element
solutions could be generated easily. For instance, the
8NQ elements can only be generated perpendicular to the
direction in which the nodes were generated due to the
fact that these elements have different node increments
between corner nodes and midside nodes. Another example,
was that the S5NT element mesh used in the cantilever beam
analyses could not be generated for reasons similar to
those stated for the 8NQ element.

(2) The placement of the midside nodes was critical in order

to obtain a solution using the SNT elements. It was
mentioned previously in Section 3.2 that an attempt was

made to improve a 5NT solution by changing the locations

of the midside nodes. The elemental nodes were input
according to Reference 3 for these rearranged nodes, but
neqative areas were calculated for the elements. This
calculation occurred during the noda)l mass allocation,

and therefore was not affected by *“e time step size., A

solution was never obtained for the mesh containing the

reordered nodes.
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(3) In the execution phase of each analysis, it was observed
that the higher-order element analyses required a smaller
time step size as compared to the 4NC element analyses.
The time step value used for the cantilever beam analyses
was set equal to the maximum value required to obtain a

stable solution using the 8NQ as determined by a tria)l

and error procedure. The stable time step for the 4NQ
solution was larger even though the 4NQ mesh used in the
analyses was significantly finer.

A summary of the conclusions discussed earlier in this chapter is
presented here, The higher-order element (5NT, 6NT, and 8NQ)
formu]étion for the calculation of strain appears to be correct for both
static and dynamic plane analyses. The 8NQ element formulation for the
internal force calculations (stress calculations are part of the
internal force calculations) was shown to be functioning properly for
static analyses using the biaxial elastic-plastic plane stress material
law and for dynamic analyses using the biaxial elastic plane strain and
plane stress material laws. Internal force calculations were also
executed correctly for the 6NT element in static and dynamic analyses
using the biaxial elastic plane stress material law. These calculations
were also correct for the S5NT element assuming that the S5NT element
cantilever beam solution could have been improved by increasing the
number of elements in the mesh. The 8NC axisymmetric formulation was
found to be incorrect for dynamic analyses using the AFWL "engineering"

model and the elastic plane strain material laws. Three potential
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additional errors were discovered in the SAMSONZ finite element

formulation and are as follows:

N

(1) The energy error formulation is incorrect in its present
state as was shown in the analysis of the soil

structure-interaction problem,

(NI

(2) The slideline calculations for the 8NQ analysis appeared
to be quite different when compared to those obtained for
the 4NQ analyses.

(3) The AFWL. "engineering" model might also be in error for

I

the B8NQ formulation when used for elastic-plastic
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CHAPTER 4

R Verification of the SAMSON2 Finite Element Formulation for the
FE' Eight-Node Quadrilateral lsoparametric Continuum Element
~
:Eg The contents of this chapter dealing with the verification of the
rii finite element formulation for the 8NQ isoparametric continuum element
. are separated into three main sections. The first section provides the
%E necessary background information needed to better understand the
‘;? capabilities of the SAMSON2 code. This infgrmation was also important
% in the code verification. The second section contains a synopsis of the
#: equations involved in the 8NQ finite element formulation currently in
: the SAMSbNZ code. Each equation presented was compared with information
é; existing in finite element texts, journal articles, and other sources in
ﬁa order to verify the formulation (1, S5, 7, 8, 9, 11-18). Any
;g‘ disagreements obtained from these comparisons are pointed out and the
fT conflicting equations from the reference materials are presented.
;f Solution flow charts and some discussion of the equations are also
gs introduced in this section. The third section in this chapter includes
5 a summary of all of the errors found during the verification of the 8NQ
EEZ finite element formulation.
)

X 4.1 Background Information
j;; The SAMSON2 <code is a dynamic nonlinear two-dimensional
ég structu. e-media interaction computer code (1) which uses an explicit
. central difference finite element solution sc-eme. Explicit integration
l_ is only conditicnally stable. Therefore, an accurate solution can only
A
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be obtained by selecting a small time step at. An energy balance is
performed at the end of each time step to check if the solution is
stable (energy error less than 1.0%). A diagonal lumped mass matrix is
used in accordance with the explicit integration scheme so that no
solution of any simultaneous equations is required in advancing a time
step. A stiffness matrix 1is never computed in an explicit time
integration scheme due to the fact that solutions of simultaneous
equations are never performed.

The SAMSON2 code was designed specifically for analyses of large
displacements, large strain problems involving nonlinear material
behavior and structure-media interface (SMI) problems. The stress and
strain calculations are performed in the analyses of these nonlinear
type problems with the use of the Cauchy stress and velocity strain
(rate of deformation) tensors. The evaluation of stresses is performed
in a corotational coordinate system which rotates coincident with the
rotation of a quadrature point in an element. Therefore, a Jaumann type
correction is not needed to maintain objectivity in the solution. The x
and y nodal coordinates used in the analyses are the spatial Eulerian
coordinates which are consistent with the velocity strain tensor.
Gaussian quadrature is used in the numerical integration of the finite
element equations for the stress and strain tensors for the 8NQ
isoparametric continuum element.

Many other features are present in SAMSON2 that are linked to the
general finite element formulation in the code. The following is a list

of some of these additional features:
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Multiple time step integration is available for problems
containing more than one mesh size in order to eliminate
unnecessary integration of the coarser meshes.

Dynamic relaxation techniques are employed in the SAMSONZ2
code in order to reduce the dynamic analyses, with the
use of sufficient damping, to a static equilibrium
solution.

Mass and stiffness (artificial viscosity) proportional
damping are used in the SAMSONZ code.

A single large storage array (Q array) is used to store
most of the major variable arrays used in the execution
of SAMSONZ.

SAMSON2 contains many material models which range from
the relatively simple elastic-plastic uniaxial stress
material law to the complicated viscoplastic material
law.

Slideline interface routines are used in the SAMSON2 code
to model relative sliding motion or material separation
between two different types of materfals such as occurs
in SMI problems. These interfaces can also be rigid in

order to connect two different type elements.

4.2 8NQ Ilsoparametric Continuum Element Formulation and Verification

This section contains the documentation of the research which was

formulation for the 8NQ isoparametric continuur element.
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performed during the verification of the current SAMSONZ finite element
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is a list of the particular items which were investigated in the
formulation:
(1) the equations involved in the determination of the total
diagonal lumped mass matrix, [M],
(2) the equations involved in the determination of the
velocity strains, {d}, Cauchy stresses,{c}, and internal

forces, {F, .},

int
(3) the calculations involved in the determination of the

nodal forces due to the externally applied loads, {Fex b

t

(4) the mass and stiffness proportional damping (CI[M] +
CZ[K]) calculations,

(5) the equations used in calculating the internal strain
energy (U) and the external work (W) terms, and

(6) the solution of the equation of motion for the nodal
accelerations {u}, velocities {u}, and displacements {u}.

These items were investigated in detail and are discussed in the

following subsections.

4.2.1 Element Confiquration and Shape Functions

and the Derivatives for the 8NQ

Some 1important information relevant to many phases of the
formulation development for the 8NQ isoparametric continuum element is
presented here. The configuration of the 8NQ element for which the
formulation was developed is shown in Figure 4.1. The local (§,n)
coordinate system is shown at the center of the element. This

coordinate system is defined such that the values for £ and n vary
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between 1.0 (value on the right and upper element boundaries) and -1.0

(value on the left and lower element boundaries).
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Figure 4.1 8NQ Isoparametric Continuum Element.

.
.. The shape (interpolation) functions (NI) for the 8NQ element are shown
v in Table 4.1 in terms of the local coordirate system. These shape
i; functions are used in both the interpolation of the element coordinates
- (Equation 4.1) and the element displacemen<s (Equation 4.2) for an
ﬁf isoparametric finite element formulation.

~
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x = T N y = T Ny (4.1)
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where,
; x,y = global (x,y) coordinates for any point in any element,
1 NI = shape (interpolation) function corresponding to node I,
: and
Xps¥yp = global (x,y) coordinates for node I,
8 8
= = T
u Ifl NquI Uy I;l NIuyI (4.2)
where,
: ux,uy = x and y displacements for any point in an element,
NI = shape (interpolation) function corresponding to node
I, and
uxi, Uy - x and y displacements for node I. -

The fundamental property associated with these shape functions is that
the value for NI is unity at node [ and is zero at all other nodes. The
derivatives of these shape functions with respect to the local element
coordinates (aNllac and aNI/an) are also shown in Table 4.1. These
derivatives are provided because they are more important than the shape
functions in the actual finite element formulation. As a final note to
this section, the shape functions and their derivatives from Table 4.1
exist in the SAMSONZ code correctly and were verified through

comparisons with References 1 and 12.

4.2.2 Determination of the Total Diagonal Lurped Mass Matrix

This section gives the equations used i.. LAMSONZ to determine the
total diagonal lumped mass matrix, (M), for the 8NQ element. Table 4.2

provides a flow chart of the main subroutines involved in the
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"
calculation of [MY and the operations performed in each subroutine. The
'E: mass matrix [M] is developed only once and is assembled prior to any
'é other calculations in the SAMSON2 solution scheme. Therefore, the
] elemental masses are determined from the initial problem configuration.
>,
-
" i
v{ Table 4.2 SAMSON2 Flow Chart for the Determination of the Total
Diagonal Lumped Mass Matrix [M] for an 8NQ Isoparametric
Plane or Axisymmetric Continuum Element.
'y
o Subroutine Operation
s :
o 1. ASSBLE (called by SMAIN) Assembles the elemental mass matrices '
x DO I = 1, # OF ELEMENTS into the total diagonal lumped mass
b matrix [M].
" 2. VASME This routine, which is called by ASSBLE, - .
= calls the appropriate VnASME routine 1
~ which is used to compute the mass matrix
4 for an element which contains n nodes.
N 0
N, 3. VBASME This routine is used to compute the
N elemental mass matrix for an 8NQ
;: jsoparametric plane or axisymmetric
: continuum element for a particular order
of integration (iorder).
;f 4. GAUSS1 This routine provides the Gauss-Legendre
. abscissae and weight coefficient values
- based on iorder which are used in VBASME :
~ in order to determine the elemental mass )
matrices.
: CONTINUE I =1+1.
)
54
v The two subroutines of primary importance in this investigation S
‘J were VBASME and GAUSS1. The subroutine VBASME contains all of the )
N formulation used in the calculation of [M]. GAUSS1 provides the d
necessary Gauss-Legendre abscissae and weight coefficients used in the \
h
v
g o
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numerical integration of [M]. These coefficients are shown in
Appendix B with the column labeled =:=a containing the abscissae
coefficients and the column labeled h containing the weight
coefficients. These coefficients exist in the subroutine GAUSS1 to 15
decima) places. However, some of these coefficients were incorrectly
typed into the SAMSON2 code. Table 4.3 shows a list of the coefficients
that were found to be incorrect.

The first step in the process of determining [M] was to calculate
the mass contained in each element (performed in  VBASME).

Equations 4.3, 4.4, and 4.5 were used to calculate the area of an

element. N
. - N
jorder iorder i
A= T o ohhe 1] (4.3) x
i=1  j=1 J 1A
'
CRX LAy L X, Y
91 = Gg x59) - G55 x 58 (4.4)
3E I=lae [ an =1 " 1
(4.5)
RN TR n T o an Tl
where,
A = area of an element,
iorder = order of integration selected for the problem
analyses,
hi’hj = Gauss-Legendre weight coefficients,
[d] = determinant of the Jacobian matrix which contains

the derivatives of the global (x,y) coordinates with
respect to the local (¢,~. coordinates,
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Table 4.3 List of Gauss-Legendre Abscissae and Weight Coefficients
Incorrectly Typed into the Subroutine GAUSSI.

Order of SAMSON?2 Correct
Integration Coefficient Coefficient
n

PR AR

.57735 02691 -0.57735
81043
89856

11073

8926 02691

2
4

+0,33998
+0.96028
+0.83603

584856 10435

.33998
. 96202
.83603

98564
11073
02395

497536
2663

+0.96816

02395
65682

.96816 07656

.67940

99024 -0.67940 95682

a) Abscissae Coefficients

Order of SAMSON2 Correct 3

Integ;ation Coefficient Coefficient ?

¥

| 3 0.55555 55555 556 0.55555 55555 55556 L
{ 3 0.88888 88888 888889 0.88888 88888 88889 ;
‘ 3 0.55555 55555 556 0.55555 55555 55556 A
8 0.22238 10345 3374 0.22238 10344 53374 k!

10 0.26926 68193 09996 0.26926 67193 09996 E:

0. 63625 15982 0.21908 63625 s

b) Weight Coefficients

W .* '( ¥




3;9 5"’ 35’ n - !
> with respect to the lccal (£,n) coordinates,
aN, N

SEL’ 3:1 = shape function derivatives ‘rom Table 4.1, and

SO 2 = x and y coordinates for any node I in an 8NQ

derivatives of the global (x,y) coordinates

element.

Equations 4.4 and 4.5 were evaluated using the Gauss-Legendre abscissae
coefficients obtained from GAUSS1 for a particular order of integration
(iorder). These coefficients were substituted into these equations for
£ and n for all possible combinations of the coefficients. Equation 4.3

requires the use of both the Gauss-Legendre abscissae and weight

:: coefficients in order to numerically integrate the area of an element.
if These three equations used in the SAMSON2 formulation were verified -
'.I
. through comparisons with References 14 and 18. The volume and the
corresponding mass of an element were computed upon completion of the
area calculation. The volume calculation for a plane element involved
multiplying the area by the thickness. The mass of an element was then
calculated by multiplying the volume times the mass density as shown in
Equation 4.6,
: iorder iorder
® M=ot ¢ I hihy 193] (4.6)
73 i=] Jj=1
.-\
SN where,
-
b M = mass for a plane element,
®

mass density of the element, and

-
®
©

iy t = thickness of the element.
7
> The volume calculation for an axisymmetric element involved multiplying
i
': the area by 2- times the distance from tne axis of symmetry to the
2
s
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i\ geometric center of an element (r). However, the SAMSON2 formulation
ES for determining r was found to be incorrect. The correct formulation
o for the determination of r is shown in fquation 4.7.
Xy + Xy * X, + X
- = _ 1 2 3 4
::' Y‘- 4.0 (4.7)
:j where,
a r = distance from the axis of symmetry to the geometric
center of an 8NQ element, and
>
\
Y XysXnsXayX, = x-coordinates for the four corner nodes of an 8NQ
3 1°72°73*"74 1 :
ks element (Figure 4.1).
-
! The SAMSON2 formulation used a value of 3.0 instead of the value 4.0 in
i: the derominator. This error was verified by comparisons to formulae in
'2: References 1 and 14 and through comparisons with hand calculated values.
}' In addition to this error, the factor 27 was not used in the calculation
E} of the volume. However the elimination of 2" was justified in that it
i canceled out in the final solution of the equation of motion. A further
_ note regarding the axisymmetric volume calculation 1is that the
\"
o calculation using r is only an approximation of the actual value. The
N
3 mass was computed for an axisymmetric element using Equation 4.8. This
) equation with the use of the correct r value was verified as being
. correct.
- _ forder iorder
- M=o0oF L z hihj |J| (4.8)
] i=1 j=1
- The second step in the process of determining (M1 was the
- allocation of the calculated element mass to the appropriate nodes. ~re
? element mass was allocated to the nodes of an BNQ according °.
,:

A .'_.,'.,‘\_,\’\" >, e ae e, e, .
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Figure 4.2. As illustrated, 20% and 5> of the element mass were »

allocated to the midside nodes and corner nodes, respectively. This hpéf
nodal mass distribution used in the SAMSON2 coce could not be verified. y
However, it was found to be similar to a tributary area approach where ®

the values were 18.75% and 6.25%. It was also found to be similar to an Q »
approach which used the scaled diagonal terms of a consistent mass :
matrix where the values were 22.22% and 2.78%. In reviewing the =
different references (5, 9, 15), it was determined that no standard “ﬂh
lumping scheme for the 8NQ existed. Instead, many schemes were found -
that provided good results when used in problem solutions involving the o

8NQ continuum element. B
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Figure 4.2 Nodal Lumped Masses for an 8NQ Element.
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The final step in the process of determining [M] was the storage of

.&_.

%

these nodal masses. The mass allocated to each node in an element was

rd

a o
X

stored for each nodal degree of freedom in an array called smass. The K

nodal mass allocations determined in step twc were added to smass for ‘451
¢
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each element. The diagonal lumped mass matrix [M] was completed when

the mass contribution of every element was stored in the smass array.

Upon the determination of {[M], this mass matrix remained unchanged

throughout the entire solution and was only used to solve the equation

A

of motion at the end of each time step.

4,2.3 Cletermination of the Velocity Strains

This section displays the equations formulated in SAMSON2 that are

used to calculate the velocity strain tensor, {d}. The velocity strain

tensor measures the current rate of deformation and is used for problems

involving geometric nonlinearities (large rigid body rotations and

deformations). Table 4.4 shows a flow chart of the pertinent

p AAL LR

subroutines and their functions that are used in SAMSON2 in order to

4

P
‘l'_"".’..,‘y

determine the internal nodal forces (Fint}‘ The velocity strains {d}

are computed in subroutine VBFRCN in step a as shown in Table 4.4,

The general equations for the velocity strains are similar to the

,.-",.."{—)

strain-displacement relations for small-displacement theory. A

o

Equation 4.9 shows the four velocity strain components for an B8NQ

axisymmetric continuum element,

s L

: v, 8 AN .
. x - 2 d
“wr s o)
5 3V, 8 N

. Iy

- TR ARNLEE ¥ (4.9) ,
’ v, av 8 aN 3N '
- L (gt 1

2d, yyi+;;l)=

u

(continued)

o
o
o
o

0w n %"-"-'A\"."h " n,” ‘ '\‘ q" » *. ", - -\'
.y LAl N ...lnt".ab“nanunu



AU TR T TR T O Wi VL VO VLRV

3
A

)

| o

¢

>

83 -

..P

.J‘
Table 4.4 Flow Chart for the Determination of the Internal Noda) .'
: Forces and Internal Strain Energy for an 8NQ A
{ Isoparametric Plane or Axisymmetric Continuum Element. .
l.'
f
Subroutine Oceration o
, 1. FRCIN (called by SMAIN) Combines the internal nodal forces for '1
g DO I = 1, # OF ELEMENTS each element into a total internal nodal N
b force vector. Combines the internal o
¢ strain energies for each element into one N
valye for each element type. .ﬁ

» 2. VFRCIN Calls the appropriate element routine
) (VnFRCN) which corputes the internal g
; nodal forces for an element with n nodes. -“
3. VBFRCN Computes the internal nodal forces for an -
8NQ isoparametric plane or axisymmetric 4
continyum element using the following ',
steps: )
;.
(a) Computes the global components for the Y
velocity strains using subroutines Y
GAUSS1, VBBMAT, VBSHAP, and GMPRD. "
(b) Computes the corotational strain N
increments using subroutines VSTRAN

and GMPRD. o

F.
(c) Calls the appropriate stress routines D

through STRES which compute the total 5

stresses based on the current strain £

increments and the viscous stresses

due to damping (SDAMP)., Also, the )

total strains are updated. g

(d) Computes the internal nodal forces and '

the internal strain energy for an 8NQ y

element using the stress values from -

(c¢) and subroutines STPRD and GTPRD. -

o

CONTINUE I=1+1, o
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I=1
where,
dx,d ,dz = three normal velocity strain components in the x, y,
Y and z {r, z, and ¢) directions,
dxy = shearing velocity strain component,
V.,V = velocity components for any point in an element
y (these velocities are never calculated),
d = distance from the axis of symmetry to the quadrature
point at which the strains were computed,
X; = current global deformed nodal coordinates for an 8NQ
element,
VxI’Vy' = velocity components for node I, and
aN aNI
'3y = derivatives of the shape functions with respect to

the global (x,y, coordinate system.

The velocity strain component in the z-direction, d_, is equal to zero

2
for analyses of plane continua. The derivatives of the shape functions
with respect to the global coordinate system were determined using

Equations 4.10 and 4.11.

(4.10)
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The velocity strain components shown in Ecuation 4.9 were evaluated
using a matrix [é]. This matrix incorporates the expressions from
Equations 4.9, 4.10, and 4.11 such that the velocity strain components
are obtained through the multiplication of [é] times the nodal velocity
components (VxI and VyI)'

Table 4.5 shows the results obtained when multiplying the [B]
matrix used in SAMSON2 times the nodal velocities. As shown, the
velocity strains are multiplied by a factor equal to [J|. The velocity
strains were not directly calculated because the [5] matrix was
developed for use in the determination of. the internal nodal forces, so
that the |J| term canceled out (see pp. 53-55 in Reference 1). The
determinaticn of the [é] matrix was performed in the VBBMAT subroutine
using values calculated for the shape function derivatives (aNI/ax.
aNI/ay) in subroutine V8SHAP. The [é] matrix was calculated for each
quadrature point within an element using the Gauss-Legendre abscissae
ccefficients obtained from the GAUSS1 routine. Therefore, the velocity
strains were also computed for the same quadrature points. The general
matrix product routine GMPRD in SAMSON2 was used to multiply the [é]

matrix by the nodal velocity matrix as shown in Table 4.5.
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The next step performed in the calculation for the velocity strains
was the transformation of these strains from the global (x,y) coordinate
system to the corotational reference frame (;.;). A corotational
reference frame exists at each of the quadrature points and rotates
according to the movement of these points. Therefore, in addition to
the velocity strain calculations, a rotational velocity (w) was computed

for each quadrature point using Equation 4.12.

gyt Nt 8 N IN

n+t _ 1 Xy .1 I ned I yn+d
Wi = (~f— - =) T T IEI (7 Vy: =3y Yar ) (4.12)

Equation 4,12 was found to be identical to the equation for vorticity
used in fluid mechanics (18). The rotational velocity was multiplied by
the value for the time step in order to obtain the current rotation
en*l)

increment. The total rotation for the current time step ( was then

calculated using Equation 4.13 and was then stored in the strs array in

the last location assigned to an e'ement quadrature point.

o™l . g 4 a¢ W (4.13)

where,

a™1 o «  total rotations which have occurred at a quadrature
point for the current and previous time steps,

at = time step used for the explicit integration solution
scheme, and
Miks . rotational velocity for a quadrature point which

occurred during the current time step.

The total rotation, o"+1. was then used in <he transformation matrix,

[R), in order to convert the velocity strains from the global (x,y)

FELLL S 47 2,y
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coordinate system to the corotational framework (x,y). Equations 4.14
and 4.15 show the strain transformation matrix [R] and the multiplica-
tion process which was performed in order to determine the corotational
velocity strains. The [R] matrix was not multiplied by the velocity

strain in the z-direction since dz is not affected by rotation in the

x,y plane.
cos20 sin20 cos © sin ©
[R] = sin2e cos20 -cos © sin © (4.14)
-2sin ©@ cos @ 2sin @ cos ©  cos?0-sin2e
{d 191} = [R] {d W1} (4.15)
where,
{& 9]y = vg]gcity strains, myltiplied by a factor |J|, in the
(x,y) coordinate system,
(R] = velocity strain transformation matrix, and
{d DUl = velocity strains, multiplied by a factor |J|, in the

global (x,y) coordinate system.

The transformation matrix was computed in subroutine VSTRAN in the
SAMSON2 code. A possible error was found in this subroutine VSTRAN.

For values of (8] < 1.0 x 10"5

,» the value for each of the sin © terms
was set equal to zero. However, according to small angle theory,
sin © = 0, This error may be trivial in the overall solution. The
multiplication process illustrated in Equation 4.15 was executed in
subroutine GMPRD.

One last computation was executed for the velocity strains. This

computation involved the multiplication of the corotational velocity

strains by an appropriate factor so as to obtain the incremental strains

ey ; 0 >
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for the current time step. This computation is illustrated in

: Equation 4.16 and was the last one performed prior to the calculation of
“i the stresses, {g}, and the internal forces, :Fint}‘

= (s} = &% (@ Wiy (4.16)
;E where,

i {ac} =  incremental strains determined ‘cr the current time step.

The formulation for the velocity strain calculations was found to

)
ﬂu be correct when compared to material in References 1, 9, 12, and 16.
\\J
N The only possible error found in the formulation was the use of the

;fﬁ approximation of sin o = 0.0 for [p] < 1.0 x 1:'5. Also, the use of the
e . .
}- [B) matrix for the calculation of the velocity strains was corrected

)

f; later when a factor of 1/|J| was multiplied times the velocity strains.
>
~l
'\. .

o 4.2.4 Evaluation of Stresses and Internal Forces
X

! The stresses calculated in SAMSONZ were evaluated using the Cauchy
% stress tensor. This tensor was computed in tre corotational coordinate
;j system so as to maintain objectivity in the overall solution. The
- Cauchy stress tensor is energetically conjugate to the velocity strain
:; tensor. Hence, the total internal work can be calculated using these
.r,:

ﬁ: tensors. The Cauchy stress tensor is used fo~ the incremental analysis
- of geometrically nonlinear problems.

e The SAMSON2 code contains eight differert constitutive laws which
$ are used to determine the Cauchy stresses t2sed upon the incremental
.
> strains already computed. In this study, orly the biaxial material laws
Eﬁ (subroutines STRES3 and STRES6) and the AFKL engineering" material law
2
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(subroutine STRES9) were investigated. The remainder of the material
laws were not investigated because they were considered less important
(uniaxial laws) or had been investigated in prior studies. The
stress-strain relations are provided in the following subsections for
each material law investigated. An example of the derivations that were
required in order to determine the biaxial elastic-plastic stress-strain

matrices are also provided in Appendix C.

4.2.4.1 Stress Evaluations Using the Biaxial Elastic

Plane Strain Material Law (STRES6)

The formulation for the STRES6 subroutine was developed for
isotropic linear elastic materials. STRES6 can be used for plane strain
or axisymmetric analyses. All computations were performed in STRES6
under the assumption of totally elastic material behavior. Therefore,
no yield condition or plastic flow rule is used,

The stress-strain relations for the biaxial elastic plane strain or
axisymmetric material law were expressed in terms of total stresses and
total strain as opposed to incremental values due to the assumption of
totally elastic behavior. Hence, the current total strains {;}"+1 were
computed prior to any stress calculations by adding the incremental
strains {A;}"+* (Equation 4.16) to the total strains at the end of the

previous time step {;)" as shown in Equation 4.17,
(e1™l o (" & arfgd™tt (4.17)

The total stresses were then computed using the stress-strain relations

shown in Equation 4.18.
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~ on+l Ev “n+l . " n+l 7 on+] £ " on+l
Ox -(l+v)(1-v(s T tE )+1+v(ex )
TN+l Ev Sn+l T on+l 7 on+] £ S n+l
cy T o= 2v7(ex + € e, ) + — (ey )
oMl E ;o (4.18)
Xy 1 +v) 'xy
ton+l Ev “n+l . 2 n+l o on+l 3 T on+l
I s w16 mew ) ALV R Vs e )

These equations were used for both plane strain and axisymmetric
analyses with the strain in the z-direction, ;z’ being equal to zero for
plane strain analyses. The values for ;z and ;z were both found to be
equal to zero for plane strain analyses using v = 0 (Poisson's ratio).
The current total stresses and total strains for the corotational
coordinate system were stored in the appropriate locations within the
strs array for each element quadrature point.

The calculations executed in STRES6 using Equations 4,17 and 4.18
were all verified through comparisons to References 1, 7, 12, 14, and
15. Therefore, the biaxial elastic plane strain or axisymmetric

material law was found to be correct.

4.2.4.2 Stress Evaluations Using the Biaxial Elastic-Plastic

Plane Stress Material Law (STRES3)

The subroutine STRES3 was developed for analyses involving
elastic-perfectly plastic or strain hardening materials. The solution
scheme for this subroutine is illustrated in Table 4.6 with CE and cEP
referring to the elastic and elastic-plastic stress-strain matrices

which will be presented in this section.
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Table 4.6 Solution A;gorithm for Elastic-Plastic Stress
Calculations.
Given: STRAIN = total strains for current time step, {E}"’l
EPS = total strains for previous time step, {;}"
S1G6 = total stresses for previous time step, (c}n

The following procedure is used to calculate the total stresses TAU for the

- n*l

current time step, {o} .

(a)

(b)

(c)

(9)

(h)

Calculate the strafn increment DELEPS, {A;)n**:

DELEPS = STRAIN - EPS
Calculate the stress increment DELSIG, (A;}n+§
behavior:
£

DELSIG = C

, assuming elastic

x DELEPS

Calculate TAU:
TAU = SIG + DELSIG

With TAU as the state of stress, determine the value of the yield
function F.

If F(TAU) < 0, elastic behavior assumption correct (loading elastically,
neutral lo3ding, or unioading). Hence, TAU is the correct stress valye
and the calculations for this algorithm are complete (RETURN), If
F(TAU) > O, steps (f), (g), and (h) must be executed.

If the previous state of stress was plastic (as indicated by a flag), set
RATIO = 0 and go to step (g). Otherwise, there is a transition from
elastic to plastic and RATIO, the portion of DELSIG which s elastic,
must be determined, The varfable RATIQ is determined from the equation

F {SIG + (RATIO x DELSIG)} = 0
since at the stress SIG ¢« (MTIO x DELSIG) the yield function F = 0 and
yielding is initiated.
Redefine TAU as the stress at start of yield
TAU = SIG + (RATIO x DELSIG)
and calculate the elastic-plastic strain increment
DEPS = (1 - RATIO) x DELEPS
To obtain the final stresses, which include the effect of the complete
strain increment DELEPS, the stresses corresponding to the elastic-
plastic strain increment DEPS must be added to TAU. Hence, TAU is the
current state of stress {o}™*!
Tau = TAU + (cEP x DEPS)
and the algorithm calculations are complete (RETURN).

3This table was obtained from p. 393 in Reference 12.
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Incremental stresses, {(a-:, were determined in STRES3 based on the
previously calculated strain increments (step b in Table 4.6). These
stresses were computed at elemental quadrature points as was done for
the velocity strains. These incremental stress calculations were
performed under the assumption that the strain increments were entirely
elastic. For this assumption, the incremental stresses were computed
using elastic stress-strain relations. Equations 4.19 and 4.20 show the
elastic stress-strain matrix used in the determination of the

incremental stresses and the corresponding multiplication process which

-~

was executed. The incremental strain in the z-direction, €, was
computed according to Equation 4.21.
1 v 0
CE _ £
e 1 0 (4.19)
(1 -V ) 0 0 1'\)
L 2_|
(as} = CE x {ac} (4.20)
where,
- T _ - -~ -
{Ac} = [on Aoy Atxy], and
- = S e e
{ae} [Aex Bey, by, 2.
-~ - -v -~ -~
be, = T (Aex + Aey) (4.21)

The total stresses for the current time step, (c}n+1' were
calculated by updating the total stresses from the previous time step,

{;}". as shown in Equation 4.22.
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1™ = ()" + (a0 (4.22)

These updated total stresses, {;}"+1, were then implemented into the

corresponding yield function (F) in order to determine if |
elastic-plastic behavior had occurred during the time step. The yield

function used in STRES3 for the plane stress material law is shown in

Equation 4.23.

= (o2 4+ 62 = 0 4
F (°x oy = O 9y

+ 32} (4.23)

This function was based on the von Mises yield criterion (11, 12, 15) ;
and was evaluated in subroutine STREQU wusing values obtained from !
STRES3. The value for F determined in Equation 4.23 was compared to the \
yield stress value (°;1d) obtained from the previous time step. This

yield stress value was initially established such that °;1d =9y, where

o = the input stress value for the first point (el,ol) on the
monotonically increasing piecewise linear stress-strain curve. This
value for o;]d remained unchanged for a particular elemental quadrature
point until yielding was initiated. The yield stress value was then

redetermined such that °;1d = F(S"). except Yor the case of

elastic-perfectly plastic material behavior, where °;1d remains equal to S
oy The yield value, °;ld’ was set equal to F(;") in order to record :
the previous state of stress or stress history for use in comparison 3

with the current state of stress as determined by Equation 4.23. In

. n n . .
comparing F to %14 if F< °y1d' then the assumption of elastic

g0l g0 S

behavior (loading elastically, neutral 1loading, or unloading) was

correct. Therefore, the stresses computed in Equation 4.22 were the

<,
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correct total stresses for the current time step (step e in Table 4.6).
However, if F > °;1d’ then elastic-plastic behavior has occurred and the

. stresses obtained from Equation 4.22 were incorrect and were

recalculated according to the elastic-plastic stress-strain relations in

’t

35 the following paragraphs.

o Two additional calculations were necessary for elastic-plastic
- material behavior. The first calculation was the determination of the
..I

'j: plastic modulus (modulus of the next segment on the piecewise linear
- stress-strain curve) and the next yield point. The plastic modulus (ET)
-~

v was determined in subroutine STRMOD using Equation 4.24 and the yield
-

o stress yalue was set equal to 9 such that o, > 0"1 .

# yld
“ A a - 0
: I I-1

- £y = —— (4.24)
T o -fg

il where,

<,

E: ET = plastic modulus,

Ipe€y = stress and strain values for the next yield point on

. the linear stress-strain curve, and

f,‘

i: Ty 4s€ = stress and strain values for the current yield

- 1-1°71-1

o point.

et

N However, if the stress-strain point (eI,oI) did not exist, perfect
,:.-

2 plasticity was assumed (E; = 0) and the yield stress value remained
__J
~;§ equal to a; 4. As a note, the initial von Mises yield surface that was
yi¥ established for the initial yield stress oy was simply expanded for the
v,

) following yield stresses using an isotropic hardening rule.
2
P
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The second calculation performed was the evaluation of

Equation 4,23 using the stresses from the previous time step. This

value F(o ) was then compared with °;1d using Equation 4.25,

- F(o") - o"
> SHIST = —yld (4.25)

cy]d

Equation 4.25 was evaluated in order to determine if the previous state

of stress was elastic or plastic. If SHIST < 0.001, then the previous

state of stress was plastic and the incremental strains calculated in

o Section 4.2.3 were entirely plastic. Therefore, the incremental

stresses calculated using Equation 4.20 were invalid. These incremental

stresses were then recalculated using an elastic-plastic stress-strain

g
. matrix CEP.

However, if SHIST > Q.001, then the previous stress state

was elastic and the portion (RATI0) of the incremental stresses, {Ac},

which were elastic was determined us” .g Equation 4.26. This equation

was obtained based on the expression shown in Equation 4.27.

i X

t + A2 o 4[F(80)2 x (a0 7 - F(a")?)]

Y (4.26)
2F(40)?

-

RATIO =

where,

- - - - -~

o ~n S °n “n “°n - n
P t = -ZAcx o ZAcy ay + Aoy ax + Acx °y 6a

- T
X Xy Xy

F(o" + (RATIO x 40)] - o;1d * 0 (4.27)

Equation 4.26 was verified by comparison with the solution to 4.27. The

subroutine STRYIE was used to calculate RATIO. The elastic portion of

- [ L ) - d
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the incremental stresses was calculated using RATIO multiplied by the
previously calculated incremental stresses. These elastic incremental
stresses were then added to the stresses from the previous time step as

shown in Equation 4.28.
1" = (o)™ + RATIO x {20} (4.28)

Equation 4.28 was executed in order to update the old stresses to
include the elastic portion of the incremental stresses. These updated
stresses were then implemented into the yield function in order to
update the stress state to include the elastic stress increments,
°;1d =AF(;"). This yield function value was used later in the
determination of the elastic-plastic stress-strain matrix CEP. The
plastic strain increments (A;xp, A;yp, and A;xyP) and the elastic strain
increment in the z-direction (Aez) were calculated using RATIO as shown

in Equations 4.29 and 4.30.

(Aép} = (1 - RATIO) {ac} (4.29)
where,

{A;p} = plastic strain increments, and

{A;) = incremental strains from Section 4.2.3.

Aez = RATIO x Aez (4.30)

The plastic stress increments were calculated using elastic-plastic
stress-strain relations developed in accordance with the yield function
(F), isotropic hardening and an associated flow rule. These elastic-

CEP matrix

plastic stress-strain relations are incorporated into the

-
-
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shown in Table 4.7. This matrix was developed for incremental

plasticity analyses using the yield function from Equation 4.23 and an
EP

associated flow rule., The derivation of C for the plane stress

material law was similar to that shown in Appendix C for the biaxial

plane strain or axisymmetric material law. The Y

elastic-plastic

incremental plastic stresses were determined using Equation 4.31. The

“.
incremental strain, both the elastic and plastic portions, in the P

z-direction, A;z' was calculated wusing Equation 4.32. However,

Equation 4.32 is not correct. The correct formula for determining Aez

A
is shown in Equation 4.33. )
)
tao } = €EP x (ae } (4.31) A
P p . o
where, £
- a - - ’
{Acp} = incremental plastic stresses, {onp Aoyp Atxyp}, z
Ep o . 3
C = elastic-plastic stress-strain matrix shown in )

Table 4.7, and

{A;p} = plastic strain increments, {A;xp A;yP A;xyP} which N
were either the strains calculated in Section 4.2.3 k-
(previous state of stress plastic) or the strains 2

calculated using Equation 4.29.

v A%
Jm st L, S 8 S

Ae e+ . »
(=" °* $33) ) (" ° $33) d '

-y -y .

)
-8 S,,S s
12°33 2 3 ” )
Any } (1 - RATIO) (4.32) ‘$

(5 - # 3
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where,
A;x, A; . A;x = incremental strains calculated in
y Section 4.2.3,
. 3 1 1
S S A ot ) ~UBILL
yld 1+ (R )
R T
Acz = value from Equation 4.21 if RATIO = 0 or
value from Equation 4.30 (Aez) if RATIO # 0.
(1= = B S,.5.,) (— 8 S,,S
Y I  E 1233, T P Sets) o
z lov < 8 52 X 1ev - 8 SEF Y
(m 33) ('1':'2-\; 33)
-8 5,5 -
12 3324, 8y, } (1 - RATIO) (4.33)
l-v_~8S Xy
Sova 33)

The only differences between the two equations exist in the expressions
containing Poisson's ratio. Equation 4.32 contains the terms T;; and

T%V while the corresponding terms in Equation 4.33 are T§73 and %{;;.
The terms inside the brackets on the righthand side of Equation 4.33
were obtained by substituting A;zP = 0 1in the elastic-plastic
stress-strain relations for the plane strain or axisymmetric material

law and solving for Aezp.

-}"+1 were determined

The total stresses for the current time step (o
using the plastic increments of stress obtained from the evaluation of

Equation 4.31. The total stresses were calculated using Equation 4.34.

e _~r 7

Ll £l IR ”

- P

.7,

CILAC TP LIR (8o} (4.34)
where,
* \J'.' .k o d‘ -f' o -‘y .d"-' -“(‘ -l' o W " " T L (R ) O Wie X 13, \.- '-' 0 ,U"]‘
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- {c}"*l stresses for the current time step,
§ * -
“\ {o}" = either the stresses from the previous time step if
-y RATIO = 0 or the stresses calculated in
;: Equation 4.28 if RATIO # 0, and
' {80} = plastic increments of stress determined using
o P Equation 4.31.
L4
5
N A value for the yield function (F) was then calculated with these new
‘ stresses, F(c"+1). This value F(&"+1) was then compared with the value
::5 for the next yield point, Iys obtained from subroutine STRMOD. This was
L
-ﬁ executed in order to determine if the current state of stress exceeded
. the failure criterion for the next yield point o If F(;"*l) 29
’;i then the stresses calculated using Equation 4.34 were correct and
e n “n+l . “n+l “n n
N %14 * F(e""").  However, if F(c" ") > o[, then F(o") = 914 and
i?. °;ld T 95 and the calculation process was reinitiated beginning with
;: the determination of the next vaiue for the plastic modulus
EI (Equation 4.24) and the next yield point value. One other possibility
| existed for the case of perfect plasticity. For this case, a reduction
.
s factor RED was determined using Equation 4.35 which was then multiplied
- by the stresses obtained from Equation 4.34 as shown in Equation 4.36.
-":
After these two eguations were executed, Equation 4.37 was evaluated.
f? N
o RED = —Xl—fr (4.35)
« F(U )
if where,
f:‘
- RED = factor used to reduce the stresses calculated in
Oy equation 4.34 so that the failure criterion,
".a- kn*l n
» F(o %) < °y1d‘ was met.
)' /
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(3™ = Rep x (o)1 (4.36)
F(cn+1) - o;1d
SHIST2 = = (4.37)
°y1d
where,
o3+l = stresses obtained from Equation 4.36.

If the value for SHIST2 was less than or equal to 0.001 the stresses
calculated using Equation 4.36 were the correct total stresses for the
current time step. But, if SHIST2 was greater than 0.001,
Equation 4.35, 4.36, and 4.37 were reexecuted until SHIST2 was found to
be less than or equal to 0.001.

Upon the determination of the total stresses for the current time
step, the total strains were updated to include the incremental strains
as shown in Equation 4.38. These new strains and the new stresses were

then stored in the appropriate location of the strs array. The value

for c;]d was also stored in the strs array.

(1™l o e 4 {2e) (4.38)
where,

(8} = strains obtained from Section 4.2.3 (A; , e, and 8y )

and the strain (Aez) computed in STRES3. y Xy
The entire formulation contained in STRES3 for the biaxial
elastic-plastic plane stress material law was found to be correct,
except for Equation 4.32 which was usea to determine the total strain
increment in the z-direction (;z). However, it should be mentioned that

there should be more information in the SAMSON2 Users Manual (3) with
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regard to the types of materials that can be correctly modeled using the
STRES3 subroutine. STRES3 should only be used for problems that involve
materials which exhibit ductile or semiductile stress-strain material
behavior. In fact, the von Mises failure criterion is only good for a
yielding mode of failure which is exhibited in ductile or semiductile

metals.

4,2.4.3 Stress Evaluations Using the Biaxial Elastic-Plastic

Plane Strain or Axisymmetric Material Law (STRES3)

The formulation for the bia:ial elastic-plastic plane strain or
axisymmetric material law was also contained in subroutine STRES3.
Therefore, the identical solution scheme (Table 4.6) was used for the
plane strain or axisymmetric material law as was used for the plane
strain material law with a few changes in the equations used. In this
section, due to this similarity in the solution scheme, only the
equations which were different are displayed. The discussion of the
solution algorithm will not be presented however.

The first difference between the two material laws was in the

elastic stress-strain matrix, CE. Equations 4.39 and 4.40 show the CE

matrix and the corresponding multiplication process associated with CE.

P?:v v 0 :—
l-v 0 v
E . 3 v
c ) +v =CcN 0 0 1'2\) o (4.39)
v v 0 11
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_ (as) = & x {ac) (4.40)
E where,

~ (ea}] = [A;x A;y A;xy A;Z], and

'\_ Y = [A;x A;y A;xy A;z].

[~

~.', -

E- As illustrated in these two equations, one additional stress term (Acz)
- and one additional strain term (A;z) were present. However, the A;z

“7 term equalled zero for plane strain analyses. It should be noted that
v the Equations 4.21, 4.30, 4.32, and 4.33 that were used to determine the
R strain increment in the z-direction (A;z) for the plane stress material
'x: law do not apply to the plane strain and axisymmetric material law. The
? A;z term for axisymmetric analyses was calculated in subroutine VBFRCN,
‘: The second difference between the two material laws was the yield
v% function that was used. The yield function for the plane strain or
? axisymmetric material law is shown in Equation 4.41. Three additional
n terms are present in Equation 4.41 compared to Equation 4.23. These
s terms are all a function of ;z which equalled zero for plane stress.
Fe(o2+a2+a2- Sxéy - a0, - 0,9, * 3¥§y)* (4.81)
f The third difference that existed between the two material laws
1; involved the ->quation for determining RATIO. The value for t in
- Equation 4.26 needed to be updated in order to include the ;z terms.
: Equation 4.42 shows the formula that was used to determine t for the
; plane strain or axisymmetric material law.

A R A N S R A RNy

.......
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~ .*h *n  *n ~ . a"nn °n
= - - - + - - +
t [on(Zcx o cz) Aoy(zcy o, cz)

- “n “n “n - “n
Acz(ZcZ -oy T cy) + 6A1xy Txyj (4.482)

v,
Qﬂﬂﬁf¥ﬂ¢"

The value for t determined in Equation 4.42 was substituted into

10

Equation 4.26 in order to determine which portions (RATIO) of the stress
and strain increments were elastic.
The final difference between the two material laws existed in the

elastic-plastic stress-strain matrix CEP. The derivation involved in

EP and the final CEP matrix for the plane strain

the determination of C
or axisymmetric material law is shown in Appendix C. The incremental

stresses and strains corresponding to Equation 4.31 are {A;p}T = FA;xp

-~ ~

89,5 8Teup A;zp] and {A;p}T = [A;xp A;yp A;xyp A;zp].

The remainder of the calculations performed in STRES3 were
identical for the two material laws. But, there were four stresses and
four strains involved in the calculations for the plane strain or
axisymmetric material law and only three stresses and three strains for
the plane stress material law.

The formulation for the plane strain or axisymmetric material law
was found to be correct through comparisons with References 12, 14, and

15. No errors were found in the entire plane strain or axisymmetric

formulation.

4.2.4.4 Stress Evaluations Using the Plane Strain or Axisymmetric kv
AFWL "Enginee: .ng" Material Law (STRESS) o

«
4

This section contains a brief discussion on the AFWL "engineering"

728 ®

model, In addition, some of the principal equations that are used in
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this model are displayed. The AFWL "engineering" material law was

.&

e developed primarily for modeling soils. It is defined by a piecewise !
o linear hydrostat (plot of hydrostatic pressure ([0x + cy + Gz]/3) versus '
'_ volumetric strain) with corresponding bulk moduli for both loading and

unloading/reloading (KL and K;) (see Figure 4.3).
1

VY YXXEE;

l‘- Unloading / Reloading

[ACAEAERAN

Mean Normal Stress

Loading / .

/ .
/

/
[

L 4
‘.

~— Tension Cutoff y

Volumetric Strain

An Example of a Piecewise Linear Hydrostat Curve Which is
Used to Define the AFWL "Engineering” Material Law.

Figure 4.3

It is also defined by a yield (failure) surface which plots hydrostatic

pressure versus /35 (Drucker-Prager yield criterion) where /3; equals

D
v
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the square root of the second invariant of the deviatoric stress tensor.
A nonassociated flow rule is employed in the AFWL "engineering" model,
[t should be mentioned that the AFWL "engineering" model can only be
used to model strain hardening materials. Also, the AFWL model was
formulated only for plane strain or axisymmetric analyses. Hence, the
stresses, {;), and strains, {;}, that were used in the calculations are

as follows:
(0} =fo o 1. o.]and (e} =[o, o, 1. o]
X Yy Xy 2 Xy xy z°°
Some preliminary operations were performed prior to the
determination of the stress values at the elemental integration points.
The first operation was the determination of the total strains for the
current time step, {;}n+1 (see Equation 4.38). The next operation was

tha determination of the four history parameters which are described

below:
pvolp = hydrostatic pressure for the previous time step,
P,
pevol z volumetric strain for the previous time step, 5301.
d4 = minimum volumetric strain which has been computed
throughout the solution, and
dé = volumetric strain at which the tension cut-off was

entered.

The final operation was the calculation of the volumetric strain for the

current time step (ec;}) as shown in Equation 4.43.

en+l _en+l | onel  oned (4.43)
vol X y z
e
.
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The value which was obtained from Equation 4.43 was compared with the
: history parameter d4 in order to determine which solution scheme was to Q
‘E be executed. There are two possible solution schemes that are used in
’ STRES9. The first is for a loading case where ;C;% < d4 and the second _
i scheme is for an unloading/reloading case ec;} > d4. These t.o schemes E
- by
g are discussed separately in the following paragraphs.
1f the current value for the volumetric strain was less than or é
- equal to the value for the history parameter d4, then the solution was E
. '
N determined to be in a state of loading. Upon this determination, a bulk
N modulus (K = KL) value was determined from the hydrostat curve based on
sS the value for 23;%. Also, the value for d4 was set equal to ecg% and a \
N value for v (Poisson's ratio) was chosen from the input data based on ;
N - - '
' ec;%. The normal and shear stresses for the current time step (o?+1 and
» -
N 1"*1) were then calculated for particular integration points according s
: to Equations 4.44, 4.45 and 4.46. R
' el .
X o?ﬂ = o? + 26 [Aei - (_vol T vo])] + AP (4.48)
q where, 5
. K - 2 ~
X 26 = 3—-#;-\,—“1 ’ +y
E €vol ™ pevol, and i‘
4 AP = incremental change in the hydrostatic pressure between . ;
- the current and previous time steps as was calculated “
. using Equation 4.46. ..
- ‘n+l _ “n : 3
. ‘rxy TX_Y + G Ayxy (4.45) :‘
_ n+l n N
Ap = K (Cvo«l - Cvo1) (4°46) AN
' <
t‘
ol

| 9P J O Y A5 R TS XV TV e 5 I TS ) D S O U N -~y -~ R e - e . N , ,‘
“’ . ,, N ) l.'t. in . ""‘ * : K e X 0 I AT RLA RS, 41. AASGAT AR LA .l‘v.l‘



-"-J.{-"
a -

199

These three equations were found to be correct when compared to
information that was obtained from AFWL personnel. However, a possible
error was discovered. The stress in the z-direction (;Z) was set equal
to 0.0 for elements having a thickness not equal to 1.0. This appears
to be a plane stress correction. The current value for the hydrostatic

pressure was calculated using Equation 4.47.

ph*l o pN 4 ap (4.47)
where,
= time history parameter pvolp.

This va]ye for the current hydrostatic pressure was then compared to the
1imiting mean normal stress value Pmax (the tension cut-off value). Two
possible cases were obtained based on this comparison., The first case
was for Pn+1 - Pmax < 0. This case showed that the loading had occurred
outside of the tension cut-off region of the hydrostat curve. For this
case (Pn+1 = Prax € 0), a value for the failure function (XJ) was
computed by substituting the stress values that were calculated using

Equations 4.44 and 4.45 into Equation 4.48.

XJ = /’% [(;:¥I R ;;+1j2 . (;:+1 R 5211)2 . (;;+I _‘;:¥1)27+ 6(;:;1;2}
(4.48)
The value XJ was then compared with a value YJ which was obtained from
the Drucker-Prager (17) yield (failure) surface (plot of /3;' versus
hydrostatic pressure). The value for YJ was s~ equal to the value for

/3; which was obtained from the yield surface corresponding to the value

for P"+l. The comparison between YJ and XJ was performed in order to
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determine if yielding had occurred. If XJ < YJ, then the stresses which

were previously computed in Equations 4.44 and 4.45 were correct.

However, if XJ > YJ, then the nonassociated flow rule that was

formulated in STRESY9 was applied and the stresses were recalculated by
substituting the previous stress values from Equations 4.44 and 4.45

into Equation 4.49.

8?*1 = P™1 4 cont (;?+1 LA ( )
4,49
“n+l _ “n+l :
Txy = conl Txy
where,
conl = %%.

The stress values that were obtained from Equation 4.49 were the correct

values for the case where yielding had occurred. The second case which

obtained from the comparison between Pn+1

o p

was and Pmax was for

max > 0.

occurs beyond the tension cut-off region.

This comparison shows that the current state of stress
Therefore, the values for the

stresses that were computed in Equations 4.44 and 4.45 exceed the

tension cut-off value and must be corrected. These values were changed

such that all of the normal stress values (;"+1

n+l

“n+l “n+l
x °y , and o, ) and the

value for P were set equal to the limiting mean normal stress value

P . The shear stress value was set equal to 0.0. The time history

max
parameter d6 was also modified using Equation 4.50.

n n
= - 4,
dé €vol * (Pmax P') / X (4.50)
where,

a6 = value of the volumetric strain when the solution entered

the tension cut-off region.
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[f the current value for the volumetric strain CCol was found to be >
L)
greater than the value for d4, then the solution was determined to be in N
k%
. ¢
an unloading/reloading state. The value for the bulk modulus (K = KU) i
]
and the value for Poisson's ratio (v) were determined, as in the loading K
F
case, based on the value for 53011 as long as pvolp < P__ . These values o
max I
‘h
for the bulk modulus and Poisson's ratio were then substituted into ;:'.
A
Equations 4.44, 4.45 and 4.46, as was done for the loading case, and the ';
remainder of the solution scheme was identical to that for the loading
case. However, if pvolp > P max’ then another comparison was required S'J
>l
between Nt 1 and d6. If ¢ n+ 1 was greater than or equal to d6, then the »
vol €vol o
normal stress values remained equal to P ax and the shear stress values :
- - *
equal 0.0. For the other case where eco} < d6, the stresses were nd
recalculated following the same procedure mentioned earlier in this l.f.
"'\
paragraph for the loading/reloading case where pvolp < me. However, ,’.:
o«
. N
the formulation in subroutine STRES9 was found to be incorrect for this o
case where pvolp > Pmax and ‘30% d6 when compared to information which =
was obtained from personnel at the AFWL. The total increment of .:_
volumetric strain cannot be used in order to determine the stresses for ;3-
W
a case where reloading has occurred beyond the tension cut-off. The ;
[}
proper formulation requires the determination of a factor F_ which is t-:_
i
equal to the percent of the total strain increment which is actually E
reloading out of the tension cut-off. This factor Fa is computed using
Equation 4.51 and needs to be implemented into Equations 4.44, 4.45, and $
}\
4.46 in order to calculate the correct values for the stresses. =3
>
";‘
",
w7
3
)
N
>
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n+l
€ - dé
F o= Y0 (4.51)
> a n+1 _ N .
" €vol vol

Two additional operations were performed after the correct stress

values were obtained for either the loading case or the unloading/

reloading case. The first operation which was executed was the storage

LM IS M

of the current stress and strain values, which were calculated at

particular integration points, in the strs array. The second operation

Cal bt W .

was the storage of the values for the four history parameters in the
strs array.

The formulation for the AFWL material model (STRESY9) was verified

AL LS

through comparisons with information that was obtained from AFWL . _
personnel and two errors were found. Also, it was found that a segment

within the STRES9 subroutine was never used in any analysis. This

- %

segment was associated with a plane stress material law and appears to

v
oA a

»
v a

have been eliminated from use in the AFWL model.

4.2.4.5 Evaluation of the Internal Nodal Forces

This section contains the development of the equations used in

L kel O % :'

SAMSONZ for the determination of the internal nodal forces {Fint}‘
; These forces are produced as a result of the stresses and strains which

develop within an element (see Table 4.4 on page 83). Therefore, the

VR

internal nodal forces {Fint} are a function of the amount of stress and
strain exhibited within an element,

Equation 4.52 is the basic equation used in the determination of

s e i gan

the internal nodal forces. However, no stiffness matrix is ever
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S
determined in the execution of SAMSON2 as was mentioned in Section 4.1. '
Therefore, the terms on the righthand side of Equation 4.52 need to be f
changed into terms that are consistent with the SAMSON2 formulation. ?
b
{Fint} = [k]{u} (4.52) i,
where, 3
{Fint} = internal nodal force vector, ;
(x] = structural stiffness matrix, and
. rd
{u} = vector containing the nodal displacements. 5
.
The stiffness matrix, [K], can be expressed in terms of the strain- E‘
'
displacement and stress-strain matrices ([B] and [C]) that were g
N
calculated in the previous sections as given in Equation 4.53. - ’
'b
T &
(k] = s (8] (C] (8] av (4.53) 3
v e
where, N
N
[K] = elemental stiffness matrix calculated at a particular )
integration point, F
- - ‘>
(8] = [8]/1J} , where [B] is the strain-displacement matrix K
shown in Table 4.5 of Section 4.2,3, and v
"o,
[c] = stress-strain matrix for a particular material model. A
G
The next step is to substitute this expression for [K] into X
Equation 4.52 which results in Equation 4.54, >
L
(F. .} = s (8 [C] [B] av (W} (4.58) x
int v .
)
F
But, this equation for {F} can be simplified using the expressions in 3
the following equation: &
o
"

v - L J - L4 -y ["s ) - - W - L ] A A 2 ] L] R 1" vaw » hl
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{e} = [B) (Uy
(4.55)
to} = [C] (e}
The equation resulting from the substitution of these two expressions
” into Equation 4.54 is shown in Equation 4.56. However, Equation 4.56
. still needs to be altered in order to incorporate the Gauss-lLegendre
numerical integration scheme.
1
3 (Fy = s [B) (o} Qv (4.56)
v
7 Equations 4.57 and 4.58 are the final expressions that were formulated
v into the SAMSONZ code in subroutine VBFRCN for the evaluation of the = _
N internal nodal forces for plane and axisymmetric analyses, respectively.
oo™t Tz oh b [B(E 0T Colg e ™ (4.57)
Fined - =t D0 Ny Ry LB{Egang) 10 Hollgan; '
i=] j=1
L where,
! {Fint}n+1 = internal forces applied to the nodes of an 8NQ
N element for a plane analysis,
N T .
X {Fint} [Fxl Fy1 F“2 F¥2 vee F‘7 F’7 Fxs Fy8]‘ where
~ Fxl’ FyI = internal nodal forces in the x and y
direction for node I,
t = thickness of the element,
" n = order of integration selected for the analysis,
~ hi'hj = Gauss-Legendre weight coefficients,

[8(:1.n.)]T = transpose of the stress-strain matrix shown in
J Table 4.5 which was evalvated at a particular
e smental quadrature point with the coordinates
(‘i'“J) being assigned values corresponding to the

Gauss-Legendre abscissae coefficients, and
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{’(Ei'“j)}n+l = total stresses for the current time step, including

the viscous stresses due to damping, which were
evaluated at elemental quadrature points using an
appropriate material law and were then transformed
into the global (x,y) coordinate system,

o d™le 208 non, r(en ) [B(E om0 1T Go(6,n 3™ (a.58)
int i=1 j=1 i) L I it i*] :
where,
{Fim:}""1 = internal forces applied to the nodes of an 8NQ
element for an axisymmetric analysis, and
r(€.,n.) = distance from the axis of symmetry (y-axis) to a

LA particular quadrature point (Ei'”j) obtained by using
Equation 4.1 in Section 4.2.1 and solving only for x.

Equation 4.56 by the appropriate terms used in the Gauss-lLegendre
integration scheme. In addition, the expressions in Equations 4.59 and

4.60 were used to simplify Equation 4.56.

dv = r® |J] dg dn (4.59)
where,
av = differential volume used in the integration,
' r2 = t for plane analyses (a = 0), or

r(Ei'"j) for axisymmetric analysis (a = 1), and

differential area used in the numerical integration
scheme.

dg dn

87 - 1o} (87" (4.60)

It should be noted that the total internal nodal forces for a particular

node included the contributions from all of the elements to which it was

associated.

Equations 4.57 and 4.58 were developed by replacing the integral in ~
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The stresses that were used in Equations 4.57 and 4.58 were not
equal to the stresses that were calculated in the appropriate material
law subroutines. The stresses which were calculated using the material
laws were first adjusted to include the viscous stresses that were
calculated in order to simulate stiffness proportional damping. These

adjusted stresses were then rotated from the corotational (x,y)

coordinate system to the global (x,y) coordinate system by using a

O AL,

suitable transformation matrix. Both of these adjustments to the stress
values that were obtained from the material law subroutines are

discussed in the following paragraph. One other observation that was

PSRN )

made regarding only Equation 4.58 was that the factor 27 was not
included. However, this factor is canceled later in obtaining the final
solution to the equation of motion.

The stresses {o}"]

that were calculated previously in the material
law subroutines were modified twice prior to their use in Equations 4.57
and 4.58. The first modification was the addition of the viscous

-~

stresses {o}V'$

which were calculated in SAMSON2 in order to simulate
stiffness proportional damping through the use of linear artificial
viscosity. The reason for the use of linear artificial viscosity is
because a stiffness matrix is never created in the SAMSON2 explicit
code. Llinear artificial viscosity was formulated such that the viscous
stresses {;}Vis damp out the highest frequency of an element by

approximately the specified fractfon of critical element damping (u).

The corotational viscous normal stresses {°::s } were calculated in

SAMSON2 using Equations 4.61, 4.62, and 4.63.

(PR e e e M IS I L TS I S TS IS - ew
o, Wiy o, - o, T N W O a0, Mo T N T L ' LY
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in order to approximate
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~vis, _ pVis avis
. {Gii } {P } + {Sii } (4-61)
where,
{§V1S} = hydrostatic viscous normal stresses, and
{é?}s} = deviatoric viscous normal stresses.
. d., +d,, +d
{Pv1s} - §UB ( 11 322 33) (4.62)

= specified fraction of critical element damping,
= bulk modulus computed in the stress routines,
= maximum frequency of the element, and

normal corotational velocity strains in the x,

y, and z directions that were calculated in
Section 4.2.3.

(SUisy < BE (g - n* 222 " % (4.62)
max
where,
G = shear modulus for a given material model, and
; aii = corotational velocity normal strains, i=1, 2, 3.

vis

The corresponding corotational viscous shear stress ;xy was calculated

in SAMSON2 using Equation 4.64.

. cvis | 26 Yxy (4.64)
, Xy “max at

The development for Equations 4.61-4.64 and the equations that were used

max

are not shown here, but can be found in
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Reference 1. The total corotational stresses for the current time step,
including the viscous stresses that were calculated in Equations 4.61-

4,64, were calculated

Equation 4.65,

where the first terms on the righthand side of the

s - . pav
. Y. - N -'-\\\\.-_A.\. AT WO W a¥uly, -. -

expressions were calculated previously

in SAMSONZ wusing the expressions

in the corresponding stress

shown in

i

N u a_a_" '
.J.D{{y{ .'..z(,'{' NN O

routines. These expressions were calculated in subroutine SDAMP and j:‘
were also verified through comparisons with References 1 and 16. LA
o
- - P
el ol 208 (U1t %2t %3) 2w (P91 " % - 9 =
X X “max 3 “max : 2
- - - - - e
ael_oceel 208 (%2t 43) 2 (P2 7 S T Y B
y y w 3 w 3 .
max _ . max ) ) (4.65) - - o
nel el 208 (It 92t %3)  ae (P33 7 9 - Y Y
z z “max 3 “max 3 | 4
: }
. . Y
N+l _ oI+l | 2uG xy ~
xy XY Upax 8t v
l’..
Y
These modified total stresses were then transformed in the SAMSONZ code P~
A
from the corotational coordinate system (x,y) to the global coordinate :E
o~
system (x,y) using Equations 4,66 and 4.67. ;&{.
N
—_— S ®
cos20 sin26 -sin © cos © oy
To ® sin?e cos?e sin © cos 8 (4.66) IE:?
2sin © cos © -2sin © cos © c0s26 -sinZe 3
[ £31 o
where, ;f
Ty = transformation matrix used in SAMSON2 in order to convert f;:
the corotational stresses {o} to stresses in the global 7
coordinate system {0}, and
Y
0 = current total rotation which has occurred at an element e
quadrature point as computed by Equation 4.13. Y
Y
g
l‘.‘-
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(3" = 11 (™! (4.67)

£

)

where,

’5“

{01n+1

't

global components of the stresses that were computed
in Equation 4.65, and

{5
A~

{;}n+1 = stress values that were computed using

Equation 4.65.

1@
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An error was discovered in the stress transformation matrix, [T@], when

comparisons were made with References 1, 7, and 14. The correct

transformation matrix which should be used in the SAMSON2 formulation is

-

shown in Equation 4.68.

. cos?e sin2g -2sin @ cos !
To = Ry = sin2g cos26 2sin © cos © (4.68) ;
[sinecose -sinocos & cos?e -sinp

where,

[R]T = transpose of the strain transformation matrix calculated
in Equation 4.14,

"-
o

N
SIS

N 5 %y

It should be mentioned that ¢the incorrect transformation matrix

[4

(Equation 4.66) was used in the formulations for the three-node

FEr
yr

triangular (3NT), 4NQ, 5NT, 6NT, and 8NQ isoparametric continuum finite
elements. This error can be corrected by replacing the FORTRAN

statement

S AN kg

4%

CALL STPRD (temp2,shat,stress)

v

which is formulated in the VnFRCN subroutines (n=3,4,5,6, and 8) with

LAY

the following FORTRAN statement:

‘7

1@ r
i 4

CALL GTPRD (temp2,shat,stress,3,3,1).

'y
L

Gl
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k4.
The internal nodal force equations which were formulated into the !,
o
SAMSONZ code were found to be correct when compared to References 1, 9, :j
]
13, and 16. However, one error which was related to the internal force ;‘,
>d
calculation was found. This error was in the formulation for the stress L
o
transformation matrix. This is a major error and needs to be corrected o
-"“
in the current versions of SAMSON2 code in order for the program to -
a
provide correct results. v
‘v
r: ‘
4.2.4.6 Evaluation of the Internal Strain Energy ’Nf
"~y
The equations that were formulated in the SAMSON2 code for the ®
determination of the internal strain energy are presented in this :;
section. Strain energy is a function of the Cauchy stresses and the :;
o
velocity strains within an element. The internal strain erergy is )
calculated correctly for these conjugate measures of strain rate and »ji
. \'.\
stress. i
RN
The basic relation which is used for determining the internal »-
i
strain energy is shown in Equation 4.69. :}2
e
i~
V=3 7 (e} o} Qv (4.69) 2
v .
where, 'ii
U = total internal strain energy within a system, and ié‘
{e}r{o} = stresses and strains within a system. °
However, this equation was altered in order to be consistent with the ,ﬂ;
A
SAMSON2 formulation. The resulting expressions which were used in the o
°
SAMSON2 code for the determination of the total internal strair energy NG

A

.t ar e e
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are shown in Equations 4.70 and 4.71. It should be noted that a 2+ term

was not included in the determination of the internal strain energy for
axisymmetric analyses because it is canceled in the determination of the

energy error.

JE n n ,
™l ey 1 o(: oz [r%hyh 198 o0 ) sedd (4.70)
=1 i=1 j=1 J
where,
Un+1.Un = total internal strain energies of the system for the
current and previous time steps, respectively,
JE = total number of elements in the system, and
Ae = increment of internal strain energy computed for an
elemental integration point as shown in
Equation 4.71.
nstres . I+§ R n+1 - n
se = ¢ {ae(E;,n;)Y % x({o(E,,n;)} + {a(g,,n;)}") (4.71)
i=1 LR 15 LA
where,
nstres 3 for plane stress analyses, and

4 for plane strain or axisymmetric analyses;

incremental strains that were computed in
Equation 4.16 of Section 4.2.3 for a particular
Gaussian quadrature point; and

A;(E‘I :nj)

- n+l1
{C(Ei,nj)} ’

{;(si,n.)}" = total stresses that were computed using the
J appropriate material law routines for the current
and previous time steps, respectively.

Equations 4.70 and 4.71 were verified through comparisons with

Reference 1. The value for the total internal strain eneray, U"+1. was

® stored in the strs array for use later in the energy error solution.
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4.2.5 Determination of the External Nodal forces

and the Corresponding External Work

The calculations that were involved in the determination of the
external nodal forces, (Fext}' and the external work (W) are discussed
in this section. These quantities were calculated in subroutines FREEFD

and FREEF2 of the SAMSON2 code. Some of the eguations that were used in

Y T S et Y 'S ~ - iy . PR ‘
"""'_ (,{v. sc&css‘...«\‘;.'}.;.- o,

these calculations are also provided. Formulation errors that were

DA AR

il 1P s
. ff(ff'.‘f'

[y

DIl AR M

L R %Y

d

discovered in these two subroutines are also mentioned.
The SAMSON2 code contains the following five different load types
(see p. 50 in Reference 3):
1) axisymmetric pressure load line
2) plane pressure load line i
3) initial impulse load line
4) force line
5) displacement history load line
with a load line referring to the consecutive nodes along which the load
was applied. The external nodal forces were computed in accordance with
the particular load type that was used in the problem solution.
Calculations of the external nodal forces were done in approximately the

[

LY

same manner for each of the five load types. These calculations are

»

e N R A XA

discussed for each of the load types in the following paragraphs.
Initial nodal velocities were calculated for the initial impulse

load line. These initial nodal velocities were calculated prior to the

start of the SAMSON2 explicit integratior. =cheme. These initial nodal

velocities were calculated in subroutine FREEFD of the SAMSON2 code
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Jas

using Equation 4.72 for the case in which the initial impulse load was

input in terms of the normal and tangential components.

SR RS

V. = i(Vt cos 8 - Vn sin 9)
: (4.72)

-
]

= i(vt sin 0 + Vn cos 9)

« initial nodal velocities transformed from the input
Y normal and tangential components to the global x and
.. y components,

-l

-

-
]

-l
]

tangential and normal components for the input
initial impulse load, and

- 0 = angle shown in Figure 4.4,

o The sign convention that was used with this impulse load is illustrated
e in Figure 4.4 with the normal and tangential components (Vn and vt)

. shown acting in the positive directions.
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Figure 4.4 Initial Nodal Velocities for an Impulse Load Input in
Terms of Normal and Tangential Components.
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Equation 4.72 was found to be -ncorrect. The correct formula for
determining the initial nodal velocities (VX and Vy) is shown in

Equation 4.73.

Vx = Q(Vt cos O + Vn sin 6)

v
y

(4.73)

g(vt sin 0 - Vn cos o)

In comparing Equation 4,72 to Equation 4.73, the only differences
between the two equations are the signs assigned to the normal velocity
component terms. For the case in which the impulse load was input in
global x- and y-components, the values for Vx and Vy were simply set
equal‘tp these input values. The values for vx and Vy were stored in
their respective locations within the velocity (V) array for each
segment along the load line. Therefore, 211 of the nodes, except for
the first and last nodes on the load line, had contributions from both
of the §egments on the load line of which they were a part. Two node
factors, factors by which the nodal velocities determined in
Equation 4.72 were multiplied (values usually equal 2.0), were used in

order to increase the values for the initial velocities for these first
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and last nodes such that they matched the values for the other nodes on LR
the load line. Upon determination of these initial nodal velocities, no Ei’
more calculations were executed for the initial impulse load and ?ﬁ
subroutine FREEFD was never used again. iﬁ
-

The calculations that were used in order to determine the external "

A
nodal forces (nodal velocities and displacements) for the displacement N
-_"\ Y

history load line were similar to those for the impulse load line. »
o

g
However, an input load line history (displacement versus time curve) was $$
{4
i
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used. Therefore, the first calculation that was performed was the
i ~l
’b determination of the displacement value for the current time step or the
\l
N total solution time. This displacement value, u"+1, was calculated in
! subroutine PRESS. This displacement value was then stored in the
l-,l
:? Tocations within the nodal displacement array (x1) corresponding to the
C8
}:& specified component (x or y) for the displacement history load line.

Nodal velocities were also computed using Equation 4.74 and stored in

." ."_ :'i:'.l".:zn'

the appropriate locations within the velocity array (V). No other

calculations were performed after the determination of these external

,,‘
-

forces (nodal velocities and displacement) in the FREEF2 subroutine.

g vl ﬂét—“n (4.74)
.*{ where,
,i: yl =  nodal velocity computed for the current time step

:; tt, and .
2 u"*l.un = displacement values obtained from the load line

i history data for the current and previous time
,53 steps, respectively.
-
'E& The values for the external nodal forces, {Fext}' that were
;j computed for the force line load were obtained using the subroutine
;g PRESS in the SAMSON2 code. The values for the external nodal forces
EE were set equal to the force value, P"+1. which was obtained from the
::_ force 1ine history data for the current time step using PRESS. These
E? values were then stored in the forcd array in the appropriate locations
E? corresponding to which force component (x or y) of the load line was
:2 specified in the input data. Two other parameters were computed for the
:E force line load. These parameters were the total external work, N"+1,
v,
N
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1. for the current time step. These

and the total linear impulse, win™*
two parameters were calculated using Equations 4.75 and 4.76.

ndnod -

WL W gar(p™ e e (T Wl (4.75)
i=1
where,
w”*l,w" = total external work computed for a particular force

line for the current and previous time steps,

P"*I,Pn = values for the forces for the current and previous
time steps that were obtained from the force line
history data using PRESS,

ndnod = number of nodes on the force line, and
u?+* = nodal velocity values for the nodes on the load
line.
WIM™ L o wiM™ + 2ot (P™! + P")(ndnod) (4.76)
where,

WML wim = total linear impulse for the externally applied
force for the current and previous time steps.

These equations were verified through comparisons with References 1, S,
9, and 16. The values for u“*l, P"*l, and HIMml were all calculated in
FREEF2 and were then stored in the strs array.

The calculations for the external nodal forces for the plane and
axisymmetric pressure load lines were very similar to those for the
force line load. However, the equations that were used in the
calculations included the areas over which the pressures were being
applied. The expressions that were used in order to determine the
external nodal forces for the plane and axisymmetric pressure load lines

are shown in Equation 4.77 and 4.78.
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3 :f
+1] i
fo= 4" t(ye2 - yel) )
n+l (4.77) iy
fy = P t(xc2 - xcl)
where, jﬁ
f ,f = external nodal force components that were computed )
y Tqr a particular segment along a2 plane pressure load i,
ine, -~
--
pn+1 current pressure value that was obtained from the E;
input load line history data using PRESS, o
5
t = thickness of the elements, and s
xcl,yel = current displaced coordinates for node I of the load A
line. N
&
)
f = }Pn+1 r(yc2 - ycl) >
£ = 3P™1 r(xe2 - xcl) (478 X
= - XC ~
y 4 rixc X :‘
where, e
fx,f = external nodal force components that were computed L
Y for a particular segment along an axisymmetric g
pressure load line, and X
e
r = §(xciexc2) = x-distance from the axis of symmetry to the -,
middle of the load line segment. ?
Figure 4.5 shows an example segment from a pressure load line with the :
o
applied pressure shown acting in the positive direction. The external by
nodal force components (fx and fy) were stored in the appropriate :z
locations within the forcd (external nodal force) array that g
corresponded to the load line nodes for each segment of the load line. k’
The external work and the linear impulse parameters were also calculated &,
for the pressure load lines. E
A
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Figure 4.5 Typical Segment Along a Pressure Load Line.

Equations 4.79 and 4.80 are the expressions that were used in subroutine

FREEF2 of the SAMSON2 code in order to determine the current total

external work for the plane and axisymmetric pressure load lines,

respectively.

H"+1 =W+ &(P"*'1 + P)[(pvoln+1 - pvol")]

n a ndn n n
pvol’ = ¢r Ifl [lyeqsy - ycl)(uxl * Uyger)

n n n n
- (ch+1 - XCI)(uyI + “yI+1) + (uxI)(“yI+1) (4.80)

ORI CRY)

where,

pvo]n = parameter calculated for time step n which i
incorporates the total nodal displacement components oy
and the x- and y-components of the distances between %

two adjacent nodes on the load line (area units),

XCrayey = the originally input x- and y-coordinates for
node I,
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U_y,U total displacement components for node [ in the
x1*"yl mesh

1 ]
ndn = ndnod - 1 = number of nodes on a load line - 1, and

t for plane analyses
$(xcl + xc2) for axisymmetric analyses.

nn

However, in a preliminary comparison made between these equations and
Equation 4.81 (obtained from References 1, 9, and 16), the external work
formulation in the SAMSON2 code for the pressure line loads was not

verified.

TLAS Y A ;At(u"+9}T({F2xt} + (R (4.81)

The linear impulse for the external nodal forces was obtained using
Equation 4.82. This equation was found to be correct when compared to
material in Reference 5.

ngn fn+1)]§ Pn+1 +p"

a.
is] ¥ p* (4-82)

ndn .
0 U U m[(it1 77 .

n+l Pn+1 un+1 n+}
»

The pvol , » and WIM parameters were all stored in the
strs array for use in the calculations for the next time step.

The majority of the formulation in subroutines FREEF2 and FREEFD
that was used in the determination of the external nodal forces,
external work, and the linear impulse was found to be correct. However,
two errors in the formulation were found and need to be corrected in
order to obtain accurate results for all analyses. These errors were in

the determination o1 the initial nodal velocities for the impulse load

and the calculation of the external work for the pressure load lines,

One additional note regarding the equations for the axisymmetric
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pressure load is that the factor 2r was not included in any of the
equations. This elimination of the factor 2n was consistent with

previous axisymmetric formulations.

4.2.6 Solution to the Equation of Motion

This section contains a brief discussion regarding the general
equation of motion followed by a discussion to the solution of the
equation of motion formulated in the SAMSON2 code. The equation of
motion 1is a mathematical expression through which the dynamic
displacement values for acceleration, velocity, and displacement are

defined. The general expression for the equation of motion is as

follows:

[MItu} + [C]U} + [KJMu} = P(t) (4.83)

where,

(M] = mass matrix for the system,

[c] = viscous damping matrix for the system,

(K] = system stiffness matrix,

{u},{u},{u} =  dynamic displacement values for the
acceleration, velocity, and displacement
occurring within a system, and

P(t) = time varying externalily applied load.

Each term in Equation 4.83 corresponds to a type of force with the terms
on the lefthand side of the equation being the {nertial, damping, and
elastic forces, respectively. The solucion to the equation of motion
provides the values for the accelerations, velocities, and displacements

for a particular point in time. And, when the solution to the equation
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of motion is obtained for different points in time, the time histories
for these three parameters can be obtained.
The equation of motion that was formulated in subroutine SOLVE of

the SAMSON2 code for time step n is shown in Equation 4,84,

“yn °\n n _ n
[MIGu” + [c)lul}"’ + {Fint} = {Fext} (4.84)
where,

[M] = lumped diagonal mass matrix that was determined in
Section 4.2.2,

fcl = damping matrix shown in Equation 4.85,

{Fint} = internal nodal forces that were computed in

. Section 4.2.4.5, and

{Fext} = external nodal forces that were calculated in
Section 4.2.5.

This equation required the following two initial conditions: (1) {u}0 =
{u(0)} and (2) (6}"} = (U(0)}. The accuracy of the solution due to
these initial velocity conditions is affected only slightly. The
damping matrix that was used in the SAMSONZ formulation is of the form
shown in Equation 4.85.

[C] = CI[M] + CZ[K] (4.85)
where,

C1 = mass proportional damping factor, and

C2 = stiffness proportional damping factor.

The stiffness proportional damping term, CZ[K]’ was included in the

determination of the nodal internal forces through the use of linear

AR



VY R W W T

T

B A e

Mmoo

132

artificial viscosity. The mass proportional damping term was

substituted into Equation 4.84 for [C] which resulted in Equation 4.86.
MIqur” « ¢y (M@ + (Fy 3" = cF " (4.86)

The mass proportional damping term is only used for dynamic relaxation
problems (see Reference 1) in order to simulate static equilibrium
through the use of sufficient damping. The value for C1 is determined
with the use of an estimate of the minimum frequency of a system as
shown on pp. 128-132 of Reference 3. The values for the nodal
accelerations at ary time step were obtained from the solution to
Equation 4.86. Equation 4.87 shows the expression that was used in
SAMSCN2 in order to determ:ne the values for the noda) accelerations for

time step n, u".

..‘ r n ) " . . n-*

{u) 7—-—5—- SO Fext! = Fipgd') - C (") (4.87)
where,

[M]'1 = inverse of the diagona! lumped mass matrix, and

W™t = nodal velocities at the half time step.

Equation 4.87 was obtained by substituting the expression shown in
Equation 4.88 into Equation 4.86 and rearranging the terms.

" = £ D" e (4.88)

Equation 4,88 was obtained through the use of central finite difference
expressions. The inversion of the diagonal lumped mass matrix, [M]’l.

in Equation 4,87 is trivial and only involves the inversion of each term
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on the diagonal. It should be noted that the acceleration values that
are output for a particular analysis involving dynamic relaxation are
not equal to the values obtained from Equation 4.87. Instead, the
values that are output for the accelerations are obtained from the
solution to Equation 4.89. These values are the actual accelerations in

a dynamic analysis.

“.n -1 n n
{u}’ = M) ({Fext} - {Fint} ) (4.89)

The values for the nodal displacements and velocities were calculated in

SAMSONZ using the central difference expressions shown in Equations 4.90

and 4.91.

™= ™t e ar )" (4.90)
where,

{ﬁ}n'é = nodal velocities for the previous time step, and

{G}" = values for the nodal accelerations that were

calculated using Equation 4.87.

™ s " e atn™ (4.91)

where,

{u}n+1.{u}" = nodal displacements for the current and previous
time steps.
The values for the accelerations, velocities, and displacements that
were calculated using Equations 4.87, 4.89, 4.90, and 4.9]1 were adjusted
in the SOLVE routine to reflect the boundary conditions of the problem.
A1l of the equations in the SOLVE routine were verified through

comparison with References 1, 9, and 16. It should be noted that the ?«
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factor does cancel out in the equation of motion for axisymmetric
analyses.

The values (u, U, and u) that were obtained by solving
Equations 4.87, 4.89, 4,90 and 4.91 were stored in the nodal
acceleration (a), velocity (v), and displacement (x1) arrays,
respectively, for use in the next integration cycle as shown in
Table 4.8. This table shows the order for which the calculations that
were exhibited in Section 4.2 were performed in the SAMSON2 explicit

integration scheme.

4,3 Summary of the SAMSON2 Formulation Errors

The 8NQ higher-order finite element formulation in the SAMSON2 code
was investigated and verified. Formulation errors were discovered in
SAMSON2 through this dinvestigation and verification process. The
following is a list of errors and possible errors that were discovered
in the SAMSON2 formulation:

(1) Twelve Gauss-Legendre abscissae and weight coefficients were
incorrectly typed into the GAUSS1 subroutine (see Table 4.3).

(2) The equation that was used in subroutine VBASME in order to
determine the mass for an axisymmetric 8NQ isoparametric continuum
element 1is incorrect (see Equation 4.7 and the associated
discussion). Also, a possible approximation error exists related
to the use of Equation 4.7 in the determination of mass for both

the 4NQ and 8NQ elements.
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o Table 4.8 Flow Chart for the SAMSON2 Explicit Integration Solution
A Scheme.
1 “
.V
“
‘\
‘ Assemble Diagonal Lumped
v Mass Matrix [M]
f\
:i: Set Initial Conditions (n=0)
_ (w9 = u(0) and (0" = (o)
X
Y
N 5
N Compute External Forces and External Work
Tl n <
) {ngt} and W
"\
::'!
.-: A
:: —{ Loop: E = 1, Total Number of Elements in Mesﬁ)
bes
|
fj [Compute Velocity Strains, {d})
"
, <
p Compute Cauchy Stresses, {o}
2
£ ]
jﬁ Compute Internal Forces and Internal Strain Energy
g (r, 0"
int_ °*
s
" — [
< Solve Equations 4.87, 4.89, 4.90, and 4.91 for
b Nodal Accelerations, Velocities, and Displacements
v ", {G}"+i, and {y)}™1
y
o
4 o
Ln
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A possible error exists in the formulation for the strain
transformation matrix (Equation 4.14). The term sin © is set equal
to zero in subroutine VSTRAN for | o] < 1.0 x 10°°.

An error may result if the biaxial elastic-plastic plane stress and

biaxial elastic-plastic plane strain or axisymmetric material laws

are used in analyses involving improper materials. The von Mises
failure criterion is only valid for ductile or semiductile metals.

The equation in subroutine STRES3 that is used in order to

determine the strain increment in the z-direction (A;z) is

incorrect for plane stress analyses where yielding has occurred

(see Equations 4.32 and 4.33 and corresponding discussion).

Thé formulation for the AFWL "engineering" model in subroutine

STRESY (see Section 4.2.4.4) contains the following four errors:

(a) The out-of-plane stress (;z) is set equal to zero for plane
strain anélyses which contain elements having a thickness not
equal to 1.0.

(b) The factor F, which is the portion of the strain which reloads
out of the tension cut-off was not fnciuded in the STRESY
formulation.

(c) A possible error exists if the computed value for the
volumetric strain (;vo1) exceeds the last limiting volumetric
strain value on the hydrostat curve. This error would occur
if the bulk modulus for the last loading segment on the
hydrostat curve was not equal to the lockup bulk modulus.

(d) Another possible error may occur if the value that is

calculated for the current hydrostatic pressure (P"+1) exceeds
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" the value for the hydrostatic pressure which is associated
> with the last input yield function point. If this condition
EE occurs, then the value for YJ is set equal to the last yield
’ point value Jﬁz. which may or may not be the correct value.

_3 (7) The transformation matrix which is used in order to transform the
’; stress components from the corotational coordinate system to the
- global coordinate system is incorrect (see Equations 4.66 and 4.68
.;E and associated discussion). This error exists for all of the plane
g and axisymmetric continuum elements.

j. (8) The equations in subroutine FREEFD that are used to calculate the
EEE initial nodal velocities for an initial impulse load which has been
és input in normal and tangential components are incorrect (see
q; Equations 4.72 and corresponding discussion).

';' (9) The external work equations in subroutine FREEF2 that are used in
QE order to compute the external work due to a plane or axisymmetric
o pressure load line appear to be incorrect based on a preliminary
é; investigation that was performed (see Equations 4.79, 4.80, and
;E 4.81 and corresponding discussion).

~ (10) The column labels that are associated with the output from the AFWL
E; "engineering" model are incorrect. The current hydrostatic
:j pressure and the current volumetric strain are labeled sig-yld and
N rot, respectively.

é? These errors in the current finite element formulation for the SAMSON2
:25 code need to be corrected an.i tested.
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CHAPTER 5

Effect of the Corrected Formulation on the Finite Element Analyses

This chapter contains a discussion of the changes that occurred in

the solutions to the problems from Chapter 3 after the corrections were

LR ALINIU

made to the SAMSON2 finite element formulation based on the results from

Chapter 4, The purpose of this chapter was to determine if more p

consistent and more reliable results could be obtained through the use

of the corrected finite element formulation. It should be noted that

some of the errors that were discovered in the SAMSON2 finite element

Hence, the

formulation were unrelated to the problems from Chapter 3.

problem solutions were unaffected and the significance of these errors

could not be determined.

The majority of the corrections that were made to the SAMSON2

formulation had little or no effect on the results for the problems in

Chapter 3. For instance, the corrections for the Gauss-Legendre

RPN

abscissae and weight coefficients in subroutine GAUSS1 resulted in no

However, all of these

change for any of the BNQ element solutioms.

solutions used an order of integration of 2.0. These corrected

coefficient values may be significant for problems in which a higher

order of integration is specified. The approximation for sin & that is {

used in subroutine VSTRAN for | @ |< 1.0 x 10" was changed to sin

© = sin © for all values of ©. This correction was very insignificant ¢

N as might be expected. The equatfion in subroutine STRES3 tha& is used to i

y calculate the incremental strain in the z-direction (Aez) was corrected

using Equation 4.33. This correction resulted in only a 1% difference "
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-

in the values for the total strains (ez) between the two solutions. No
other values (displacements, strains, or stresses) were affected by this
correction to the STRES3 routine. The correction to the stress
transformation matrix also was insignificant in its effect on the
problem solutions. Only slight changes occurred in the solutions due to
this modification. The use of the r approximation in the determination

of the diagonal lumped mass matrix for an axisymmetric continuum was

found to have no effect on the results for the axisymmetric problems.
However, the equation for determining r was in error in the original
SAMSON2 formulation. The correct expression for r (Equation 4.7) was
substituted into the updated formulation which resulted in significant
changes in the 8NQ axisymmetric solutions. This corrected r expression
resulted in very significant changes in the 8NQ element results for both
the axisymmetric wave propagation analysis and the axisymmetric analysis
of the soil-structure interaction problem. Figures 5.1, 5.2, and 5.3
show the relative improvements in the results for the axisymmetric wave
propagation when compared to Figures 3.23, 3.24, and 3.25. As shown,
the B8NQ solution which was obtained using the updated formulation no
longer lags behind the 4NQ element solution. The corrected r
formulation also improved the results for the axisymmetric analysis of
the soil-structure interaction problam which was obtained using the 8NQ
isoparametric element. Table 5.1 when compared to Table 3.6 shows the
relative improvement between the two 8NQ solutions. The 8NQ solution
which was obtained using the corrected r formulation exhibited a much
better agreement with the 4NQ solution. A significant improvement in

the 8NQ solution to the soil-structure interaction problem for the
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Table 5.1 Comparison of Y-Displacement Values Between the 4NQ and
8NQ Solutions for the 8NQ-6 Element Structural Mesh and
the 4NQ-12 Element Structural Mesh (1.0 psi Peak Load)
(Soil-Structure Interaction  Problem) After  Mass
Formulation Corrected.
Original 8NQ 4NQ Percent
Node Location Y-Displacement Y-Displacement Difference
x-coordinate y-coordinate t:=.8x10'3 sec t=.8x10'3 sec Based on
(in) (in) (in x 10°%)  (in x 107%) 4NQ Solution
0.0 72.0 -.2231 -.2112 5.6%
3.0 72.0 -.2068 .- ~--
6.0 72.0 -.1961 -.2009 2.4%
9.0 72.0 -.1882 “-- -
12.0 72.0 -.2154 -.1972 9.2%
0.0 66.0 -.2076 -.2073 0.1%
6.0 66.0 -.1894 -.1961 3.4%
12.0 66.0 -.1971 -.1912 3.1%
0.0 60.0 -.1890 -.1996 5.3%
3.0 60.0 -.1869 -—- ---
6.0 60.0 -.1916 -.1878 2.0%
9.0 60.0 -.1941 .-- .--
12.0 60.0 -.1827 -.1831 - 0.2%
0.0 54.0 -.1886 -.1949 3.2%
6.0 54.0 -.1882 -.1785 5.4%
12.0 54.0 -1777 -.1710 3.9%
0.0 48.0 -.1731 -.1898 8.8%
3.0 48.0 -.1795 .e= -—-
6.0 48.0 -.1792 -.1711 4.7%
9.0 48.0 -.1751 --- ce-
12.0 48.0 -, 1745 -.1612 8.3%
0.0 42.0 -.1584 -.1788 11.42
6.0 42.0 -,1685 -.1639 2.8%
12.0 42.0 -.1724 -.1563 10.3%
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applied blast load was also observed. The remainder of the errors,
listed in Chapter 4 and not discussed in this section, were not related
to the problem solutions in Chapter 3.

In conclusion, the majority of the SAMSON2 formulation errors that
were presented in Chapter 4 were insignificant in their effect on the
problem solutions. However, the corrected r formulation rendered a
significant improvement in the 8NQ axisymmetric analyses. On the basis
of this result, the corrected SAMSON2 formulation does provide more

consistent and more reliable results.
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CHAPTER 6

Conclusions and Recommendations

The primary conclusion, based on the results that were presented in
the previous chapters, is that the current finite element formulation
for the eight-node quadrilateral isoparametric continuum element
provides consistent and reliable results for problems which invoive
plane analyses. However, some minor errors exist in the general SAMSON2
finite element formulation that need to be corrected. Also, the 8NQ
axisymmetric continuum formulation contains a significant error in the
axisymmetric mass formulation that needs to be corrected in the current
formulation in order for accurate results to be obtained. Hence, the
errors that were discovered in the SAMSON2 formulation (see Chapter 4)
must be corrected in order for consistent and reliable results to be
obtained for both 8NQ axisymmetric analyses and general continuum finite
element analyses.

Some further conclusions that were drawn based on the results from
the previous chapters are as follows:

(1) The higher-order element (5NT, 6NT, and 8NQ) solution schemes are
less efficient than the 4NQ solution scheme. This conclusion is
based on the fact that much longer execution times were required
for the higher-order element solutions.

(2) The finite element formulation for the 6NT isoparametric continuum
element works properly; for elastic plane analyses of flexure

problems. This conclusion is based on the good correlation in
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results that was obtained in the cantilever beam analyses between

the SAMSON2 and the corresponding amalytical solutions.

(3) The SNT isoparametric continuum elemert should only be used as a

transition element for which it was designed. This conclusion is

based on the SNT results for the cantilever beam problem, :

NN

Smaller time step values are necessary for solutions which involve

higher-order elements as opposed to the values that are required

for 4NQ element solutions.

The higher-order element (6NT and 8NQ) solutions were more accurate

in some cases compared to corresponding 4NQ solutions and were

obtained using fewer nodes and elements.

for future work

Recommendations are presented below. These <

recommendations are based upon both the work that has already been

performed and the results that were obtained during this study.

(1) The 8NQ element needs to be used with the éorrected formulation in

a soil-structure interaction (SSI) problem for which test data are

available in order to determine whether the 8NQ element solution is

accurate for an SSI problem.

Additional problems need to be analyzed using the 8NQ higher-order

element in order to test the performance of the SAMSON2 8NQ finite

element formulation more thoroughly.

The 5NT and 6NT continuum elements need to be investigated more

extensively through the solutions to more problems and the

formulation verifications.

Problems need to be analyzed using discretizations which contain

Results for these

both the higher-order and the 4NQ elements.
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problems could be used to determine whether transitions can be made

between the different elements with accurate results still being

obtained.

The corrected finite element formulation needs to be further tested

since some of the errors were unrelated to the problem analyses

that were performed in this investigation. For instance, the

corrections in the AFWL "engineering" model need to be further

tested.

A further investigation and verification needs to be undertaken

regarding the equations that are used in the SAMSON2 code in order

to compute the external work for plane and axisymmetric pressure

loadings.

If the 8NQ finite element formulation produces inaccurate results

in future problem analyses, then the following two items should be

performed:

(a) development of alternative schemes for determining the nodal
masses, and

(b) investigation of the addresses and indexes that are used in
the 8NQ finite element formulation {in order to store and

recall information from the various parameter arrays.
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APPENDIX A

<

Examples of SAMSONZ Input for the Finite Element Analyses
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ELASTIC CONT. 16 QUAD ELTS WITH DISPLACEMENT/FREE RT END
27 16 1 6 130 0.25 1 0
s 3 1
o~ 980. CM DYNE DYNE
e 1 6 4 ELASTIC PLANE STRESS
o 0.0 1.0
R 1.0 1.0 0.0 0.0
1
N 9 16.0
N 10 2.0
o 18 16.0 2.0
e 19 0.0 4.0
S 27 16.0 4.0
1 1 1 2 11 10 1
8 8 9 18 17 1
s $ 10 11 20 19 1
‘N 16 17 18 27 26 1
&) 121
5 1021
1921 :
A 901
" 1801
o 2701
W : 8 3 2
e 1104X-DISPL NODE= 1
Wi 31044-DISPL NODE= 3
A 5104X-DISPL NODE= S
‘g 7104X-DISPL NODE= 7
i 14104X-DISPL NODE=14
3114X-VEL NODE=3
o $114X-VEL NODE=S
[~ 7114X-VEL MODE=?
2 SASTRESS AT 2
. 4 SASTRESS AT ¢
6 SASTRESS AT 6
. 25 3
N 0 3
'.\ 2 1 -] 3
L 1 3 5 1 e
N 2 ¢ 6
s 1 32 1 9 10
0. 0. 2. 8.0E-$ 4. 2.93%-3 6. 6.17€-3
8. .01 10. 1.383g-2 12. 1.7078-2 14, 1.926E-2
~ 16. .02 3s. .02
N 119
s
l."
v
ot
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o Figure A.1 One-Dimensional Wave Propagation Problem: Input for the
e 4NQ Element Discretization.
-’.'
-I'._
s
o
.,
t, 1-"-\ " \"'-.\~.~."-.-'-_-’-."'-."' q, A T e T T LT T -'.\-'._ e e N e T e R ~- ‘-l“ - o




A AR N o ey e Y laphe s7a st B Sa A te s estingte A v X Fole® daf Siaft ie® et et Rt et By’
152
ELASTIC CONT. 16 8-NODED QUAD ELTS WITH DISPLACEMENT/FREE RT END
69 16 1 10 130 0.25 1 0
) 3 1
980. CM DYNE DYNE
1 6 4 ELASTIC PLANE STRESS
2.0 1.0
1.0 1.0 0.0 0.0
1
5 4.0
6 1.0
{ 8 1.0 4.0
9 2.0
13 2.0 4.0
14 3.0
16 3.0 4.0
17 4.0
21 4.0 4.0
22 5.0
24 5.0 4.0
25 6.0
29 6.0 4.0
30 7.0
32 7.0 4.0
33 8.0
37 8.0 4.0
38 9.0
40 9.0 4.0
41 10.0
45 10.0 4.0
46 11.0 -
48 11.0 4.0
49 12.0
53 12.0 4.0
54 13.0
56 13.0 4.0
57 14.0
61 14.0 4.0
62 15.0
64 15.0 4.0
65 16.0
69 16.0 4.0
1 1 9 11 3 6 10 7 2 1 8
8 57 65 67 59 62 66 63 58 1 8
9 3 11 13 5 7 12 8 4 1 8
16 59 67 69 61 63 68 64 60 1 8
121 1
-521 1
Figure A.2 One-Dimensional Wave Propagation froblem: Input for the
8NQ Element Discretization.
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6501 1
-6901 1
1 8 12 2
1104X-DISPL NODE= 1
17104X-DISPL NODE=17
33104X-DISPL NODE=33
49104X-DISPL NODE=49
35104X-DISPL NODE=35
17114X-VEL NODE=17
33114X-VEL NODE=33
49114X-VEL NODE=49
2 SASTRESS EL2 #l
2144STRESS EL2 #2
2234STRESS EL2 #3
2324STRESS EL2 #4
4 S4STRESS EL4 #1
4144STRESS EL4 #2
4234STRESS EL4 ¥3
4324STRESS EL4 #4
6 S4STRESS EL6 #1
6144STRESS EL6 #2
6234STRESS EL6 #3
6324STRESS EL6 ¥4
25 3
50 3

'rrv..

oLy

ARG

.t'}"}?

.' "y

17 33 49 35

NN
»
[« 3

5 2 1 1 10
. 0. 2. 8.0E-5 4. 2.93E-3 6. 6.17E-3

0
8. .01 10. 1.383E-2 12. 1.707E-2 14. 1.924E-2
6 .02 3s. .02 . .
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Figure A.2 One-Dimensional Wave Propagation Problem: Input for the
8NQ Element Discretization (Continued).
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) STATIC ANAL. OF A CANT. BEAM USING 64 4NQ ELEMS. 6/20/85 BY S. MILLER
85 64 1 5 4000 3.4E-5 1 0 1000.
, 2 0 0 0 1
ﬁ 32.2 FT
. 1 3 4 4-NODE PLANE CONTINUUM ELEMENTS
) 0.01 2.0
16.0 4176.0E6 0.0 0.00 0.0
- 1 0.0 0.0
N 17 16.0 0.0
. 18 0.0 1.0 !
£ 34 16.0 1.0 )
- 35 0.0 2.0
51 16.0 2.0
52 0.0 3.0
Wy 68 16.0 3.0
'ﬂ 69 0.0 4.0
» 85 16.0 4.0
’ 1 1 2 19 18 1
¢ 16 16 17 34 33 1
.. 17 18 19 36 35 1
” 32 33 34 51 SO 1
g 33 .35 36 53 52 1
- 48 SO0 51 68 67 1
- 49 52 53 70 &9 1 ‘
B, 64 67 68 85 84 1
pa 111
>, 1811 _
5 3511 ,
>, ‘5211 g
~ 6911 )
>~ 1 1 2
v 51200
. 150 (
: 8 50 !
M 5000 5000 ]
- 1 17 -1 1 3 J
’ 0.0 3.1E-3 100.0 1.0 100.0
69
. ¢
. !
L=
dLN +
. Figure A.3 Cantilever Beam Problem: Input for the 4NQ Element
- Discretization.
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STATIC ANAL. OF A CANT. BEAM USING 32 SNT ELEMS. 6/20/85 BY S. MILLER

61 32
2
32.2
1 3
2.0
16.0
1
9
10
26
27
35
36
52
53
61
1 1
2 2
3 3
4 4
S S
6 6
7 7
8 8
9 28
10 29
11 30
12 31
13 32
14 33
15 34
16 35
1?7 27
18 28
19 29
20 30
21 il
22 32
23 33
24 34
25 54
26 55
27 56
28 57
29 58
30 s9
Fiqure A.4

1 5 4000 3.4E-5 1 0 100C.
1
FT
4 5-NODED TRIANGULAR CONTINUUM ELEMENTS
2.0
4176.0E6 0.0 c.0 0.0
0.0 0.0
16.0 0.0
0.0 1.0
16.0 1.0
0.0 2.0
16.0 2.0
0.0 3.0
16.0 3.0
0.0 4.0
16.0 4.0
2 217 11 10 1
3 29 14 13 1
4 29 15 14 1
5 31 18 17 1
6 31 19 18 1
7 33 22 21 1
8 33 23 22 1
9 35 26 25 1
27 2 1 12 1
28 2 12 13 1
29 4 15 16 1
30 4 16 17 1
31 6 19 20 1
32 6 20 21 1
33 8 23 24 1
34 B 28 25 1
28 54 38 37 b
29 54 39 38 b
30 56 42 41 1
31 56 43 42 1
32 58 46 45 1
33 58 47 46 1
34 60 50 49 1
3 60 51 50 1
53 27 38 37 1
54 29 39 40 1
58 29 40 41 1
56 31 43 44 1
57 31 44 45 1
S8 33 47 48 1

Cantilever Beam Prodblem:
Discretization.

Input for the SNT Element

Sdadyin i)




31 60 48 4S8
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1
35200
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4150
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Figure A.4 Cantilever Beam Problem: Input for the SNT Element
Discretization (Continued).
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- STATIC ANAL. OF A CANT. BEAM USING 32 6NT ELEMS. 6/20/85 BY S. MILLER

1
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15
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37
49
39
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71
83
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6-NODED TRIANGULAR CONTINUUM ELEMENTS

5 4000
FT
2.0

6.0E6 0.0
0.0 0.0
16.0 0.0
0.0 1.0
16.0 1.0
0.0 2.0
16.0 2.0
0.0 3.0
16.0 3.0
0.0 4.0
16.0 4.0
35 2 19
47 14 31
39 4 22
51 16 34
35 20 36
47 32 48
37 21 38
49 33 50
71 36 54
83 48 66
71 38 55
83 50 &7
69 53 70
81 65 82
71 56 72
83 68 84

17

17
1 2
1
3.1E-3

0.0 0.0
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20
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54
66
S2
64
58
67
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Cantilever Beam Problem: Input for the 6NT Element
Discretization.
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‘ STATIC ANAL. OF A CANT. BEAM USING 16 8NQ ELEMS. 6/26/85 BY S. MILLER
: 69 16 1 5 4000 3.4E-5 1 0 1600.
B> 2 0 o 1
o 32.2 FT
N 1 3 4 8-NODE PLANE CONTINUUM ELEMENTS
h 2.0 2.0
16.0 4176.0E6 0.00 0.00

. 1

- 17 16.0
: 18 1.0
- 26 16.0 1.0

¢ 27 2.0

’ 43 16.0 2.0

44 3.0

f 52 16.0 3.0

-~ 53 4.0

) 69 16.0 4.0

N 1 1 3 29 27 2 19 28 18 1
. 2 3 5 31 29 4 20 30 19 1

e 3 5 7 33 31 6 21 32 20 1

9 4 7 9 35 33 8 22 34 2a 1

. 5 .9 11 37 35 10 23 3 22 1 :
~ 6 11 13 39 37 12 24 38 23 1 f
X 7 13 15 41 39 14 25 40 24 1
"N 8 15 17 43 41 16 26 42 25 1

! 9 27 29 55 S3 28 45 54 44 1
> 10 29 31 57 S5 30 46 56 45 1

< 11 31 33 59 57 32 47 58 46 1

v 12 33 35 61 59 34 48 60 47 1
O 13 35 37 63 61 36 49 62 48 1

. 14 37 39 65 63 38 S0 64 49 1

i 15 39 41 67 65 40 S1 66 S0 1

N 16 41 43 69 67 42 52 68 51 1
o 111 ]
‘e 1811 \
- 2711 ,
) 4411 !
) 5311

. 1 1 2

A 43200~

:f 150

" 4250

> 5000 5000

3 1 17 -1 1 3

> 0.0 0.0 3.1E-3 100.0 1.0 100. ,
[ 53 .
- Figure A.6 Cantilever Beam Problem: Input for the B8NQ Element

. Discretization.
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SOIL-STRUCTURE INTERACTION ANAL. USING 4NQ AXIS. CONT.ELEMS. 7/25/85 b
300 252 2 31 1600 0.5E-6 2 1 4
3 1 ]

] N
1 9 14  YUMA SOIL PARAMETERS o

0.05 . -

‘ 0.173E-3  0.158E7 0.38 0.01 5.0 1.0 2.0 )
{ 0.2644E5  -0.122 0.38 3
0.4429ES  -0.156 0.38 o
{ 0.1553E6  -0.192 0.38 >
0.3442E6  -0.212 0.38 "

0.2199E7 -0.999 0.38 .
0.2199E7 0.0 0.38 §i
0.7249E2 0.0  0.65E6 -0.1E7 ",
2 9 14 FIBER REINF. CONC. PARAMETERS )
0.05 N
0.2516E-3  0.42E7 0.24 0.01 4.0 1.0 3.0 oy

0.1125E7 -0.6E-2 0.24 *

0.1940E6 -0.32E-1 0.24 ;

.1380E6 -0.SE-1 0.24 »
.2700E7 -0.999 0.24 =)
0.1125E7 0.62SE3 0.24 iy,
0.4E3 0.2E3  0.81E4 -0.47E4 0.2916E5 -0.268ES }3

1 0.0 0.0

7 0.0 36.0 o

8 6.0 0.0 3

_ 14 6.0 36.0 >
! 15 12.0 0.0 N
27 12.0 72.0 7

28 18.0 0.0 Y

40 18.0 72.0 .

41 24.0 0.0 &
53 24.0 72.0 3
54 30.0 0.0 o~
66 30.0 72.0 Jov

67 36.0 0.0

79 36.0 72.0 "~

80 42.0 0.0 ).

92 42.0 72.0 X

93 - 48.0 0.0 ~
108 48.0 72.0 )
106 54.0 0.0 e
118 54.0 72.0 X

119 60.0 0.0 ;

131 60.0 72.0 N

132 66.0 0.0 £t
144 66.0 72.0 ~
21

' Figure A.7 Soil-Structure Interaction Problem: Input for the Finer '
' 4NQ Element Discretization. ]
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145 72.0 0.0
- 157 72.0 72.0
o 158 78.0 0.0
>, 170 78.0 72.0
. 171 84.0 0.0
Ny 183 84.0 72.0
y 184 90.0 0.0
196 90.0 72.0
o 197 96.0 0.0
et 209 96.0 72.0
" 210 102.0 0.0
o 222 102.0 72.0
b 223 108.0 0.0
235 108.0 72.0
o 236 0.0 36.0
o~ 248 0.0 72.0
< 249 3.0 36.0
- 261 3.0 72.0
4 262 6.0 36.0
g 274 6.0 72.0
- 275 9.0 36.0
. 287 9.0 72.0 '
[-- 288 12.0 36.0
. 300 12.0 72.0
1 1 8 9 2 1
6 6 13 14 7 1
- 7 8 15 16 9 1
b 12 13 20 21 14 1 ;
o 13 15 28 29 16 1
.. 24 26 39 40 27 1
25 28 41 42 29 1
36 39 52 53 40 1
N 37 41 54 55 42 1
" 48 52 65 66 53 1
N 49 54 67 68 55 1
e 60 65 78 79 66 1
. 61 67 80 81 68 1
72 78 91 92 19 1
-3 73 80 93 94 81 1
s 84 91- 104 105 92 1 ‘
. 85 93 106 107 94 1 1
= 96 104 117 118 105 1 !
o 97 106 119 120 107 1
, 108 117 130 131 118 1
. 109 119 132 133 120 1 ‘
"¢ 120 130 143 144 131 1
‘; 121 132 145 146 133 1 y
o 3
v
>, Figure A.7 Soil-Structure Interaction Problem: Input for the Finer ’
M 4NQ Element Discretization (Continued). .
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161

132 143 156 157 144
133 145 158 153 146
144 156 169 170 157
145 158 171 172 159
156 169 182 183 170
157 171 184 185 172
168 182 195 196 183
169 184 197 198 185
180 195 208 209 196
181 197 210 211 198
192 208 221 222 209
193 210 223 224 211
204 221 234 235 222
205 236 249 250 237
216 247 260 261 248
217 249 262 263 250
228 260 273 274 261
229 262 275 276 263
240 273 286 287 274
241 275 288 289 276
252 286 299 300 287
101
-1501 7
2801
-21001 13
22311
22410
-23510 1
20 16 13 1
248204DIS5248
248224ACC248
261204D15261
261224ACC261
274204015274
274224ACC27¢
287204015287
287224ACC287
300204D15300
300224ACC300
105204D75105
105224ACC10S
118204DIS118
118224ACC118
131204D15131
131224ACC131
215 64STR 215
216 64STR 216

N NN NN NN RN - s s = e = s o

Figure A.? Soil-Structure Interaction Problem: Input for the Finer
4NQ Element Discretization (Continued).
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227 64STR 227
228 64STR 228
239 64STR 239
240 64STR 240
251 64STR 251
252 64STR 52
95 64STR 95
96 64STR 96
107 64STR 107
108 64STR 108
253 S4ENERGY ERROR
1600 3
1601 40 24 56
248 261 274 287 300 246 259 272 285 298 244 257 270 283 295
105 118 131 103 116 129 161 114 127
215 216 227 228 239 240 251 252 213 214 225 226 237 238 249
250 211 212 223 224 235 236 247 248 209 210 221 222 233 234
245 246 95 96 107 108 93 94 105 106 91 92 103 104 89
90 101 102 87 88 99 100 85 8 97 98
1 5 -2 0 0 13 9 .
0.0 0.0  0.2E-3 C.SES  0.4E-3 0.25ES 0.12E-2  O0.1SES
0.3E-2 7000. 0.6E-2 3000. 0.1020E-1 2200. 0.2020E-1 1000.
0.402E-1 500.
248
2 17 -z o o0 13 9
0.0 0.0  0.2E-3 0.5£5  0.4E-3 0.25ES 0.12E-2  0.ISES
0.3E-2 7000. 0.6E-2 3000. 0.1020E-1 2200. 0.2020E-1 1000,
0.4028-1 $00.
27
1 9 17 o0 0
0 0.3E-6 0.2 0.58  72.%5  0.17
7 14 21 22 23 24 25 26 27 300 299 298 297 296 295 294
293 292 291 290 209 288 275 262 249 236
Figure A.7 Soil-Structure Interaction Problem: Input for the Finer

4NQ Element Discretization (Continued).
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SOIL-STRUCTURE INTERACTION ANAL. USING 8NQ AXIS. CONT.ELEMS. 7/25/85

237 63
3
1 9
2.0
0.173E-3
0.2644E5
0.4429ES
0.1553E8
0.3442E6
0.2199E7
0.2199E7
0.7249E2
2 9
2.0
0.2516E-3
0.1125E7
0.1940E6
.1380E6
.2700E7
0.1125E7
0.4E3
1
19
20
29
30
48
49
58
s9
77
78
87
88
106
107
11%
116 -
132
133
141
142
158
159
167
Figure A.8

2 31 1600 0.5E-6 2 1
0 0 1
14 YUMA SOIL PARAMETERS
0.158E7 0.38 0.01 5.0
-0.122 0.38
-0.156 0.38
-0.192 0.38
-0.212 0.38
-0.999 0.38
0.0 0.38
0.0 0.65E6 -0.1E7
14 FIBER REINF. CONC. PARAMETERS
0.42E7 0.24 0.01 4.0
-0.6E-2 0.24
-0.32E-1 0.24
-0.5E-1 0.24
-0.999 0.24
0.625E3 0.24
0.2E3 0.81E4 =-0.47E4 O0.2916ES5 ~
0.0 0.0
108.0 0.0
0.0 6.0
108.0 6.0
0.0 12.0
108.0 12.0
0.0 18.0
108.0 18.0
0.0 24.0
108.0 24.0
0.0 30.0
108.0 30.0
0.0 36.0
108.0 36.0
12.0 42.0
108.0 42.0
12.0 48.0
108.0 48.0
12.0 54.0
108.0 54.0
12.0 60.0
108.0 60.0
12.0 66.0
108.0 66.0

Soil-Structure Interaction Problem:
8NQ Element Discretization.
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164
168 12.0 72.0
184 108.0 72.0
185 0.0 36.0
189 12.0 36.0
190 0.0 39.0
192 12.0 39.0
193 0.0 42.0
197 12.0 42.0
198 0.0 45.0
200 12.0 45.0
201 0.0 48.0
205 12.0 48.0
206 0.0 51.0
208 12.0 51.0
209 0.0 54.0
213 12.0 54.0
214 57.0
216 12.0 $7.0
217 60.0
221 12.0 60.0
222 63.0
224 - 12.0 63.0
225 66.0
229 12.0 66.0
230 69.0
232 12.0 69.0
233 72.0
237 12.0 72.0
1 1 3 32 30 2 21 31 20 1 29
3 59 61 90 88 60 79 89 78 1 29
4 3 5 4 32 4 22 33 21 1 29
6 61 63 92 90 62 80 91 79 129
7 90 92 118 116 91 108 117 107 1 26
9 142 144 170 168 143 160 169 159 1 26
10 5 7 36 34 6 23 35 22 1 29
12 63 65 94 92 64 81 93 80 1 29
13 92 9% 120 118 93 109 119 108 1 26
15 144 146 172 170 145 161 171 160 1 26
16 7 9 38 36 8 24 37 23 1 29
18 65 67 9% 94 66 82 95 81 1 29
19 94 96 122 120 95 110 121 109 1 26
21 146 148 174 172 147 162 173 16l 1 26
22 9 11 40 38 10 25 39 24 1 29
24 67 69 98 96 68 83 97 82 1 29
25 96 98 124 122 97 111 123 110 1 26
27 148 150 176 174 149 163 175 162 1 26
28 11 13 42 40 12 26 41 25 1 29
Figqure A.8 Soil-Structure Interaction Problem: Input for the Finest
8NQ Element Discretization (Continued).
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30 69 71
31 98 100
33 150 1852
3¢ 13 15
3 71 73
37 100 1lo2
39 152 154
40 15 17
42 73 7S
43 102 104
45 154 156
46 17 19
48 75 M
49 104 106
51 156 158
52 185 187
57 225 227
58 187 189
63 227 229
101
-1801
1911
2910
4810
5810
7710
8710
10610
11510
13210
14110
15810
16710
18410
20
233204015233
233224ACC233
234204DIS234
234224A6C234
235204D18235
235224ACC235
236204DIS236
236224ACC236
237204DI1S237
237224ACC237
174204D1S5174
174224ACC174

Figure A.8

100
126
178

44
102
128
180

46
104
130
182

48
106
132
184
195
235
197
237

16

Soil-Structure Interaction Problem:
8NQ Element Discretization (Continued).
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16€

175204DIS17%
175224ACC175
176204D15176
176224ACC176
57 64STR 57#1
57194STR 57#2
57324STR 5743
S7454STR S7#4
63 64STR 6341
63194STR 6382
63324STR 6343
63454STR 6384 .
27 64STR 2741
27194STR 2742
27324STR 2743
27454STR 27%4
64 54 ENERGY ERROR
1600 3
1601 40 24 14
233 234 235 236 237 225 226 227 228 229 217 218 219 220 221
174 175 176 148 149 150 122 123 124 ’
57 63 Sée 62 55 61 sS4 60 27 26 25 24 23 22
1 5 -2 9
0.0 0.0 0.2E-3 0.5ES 0.4E-3 0.25ES 0.12E-2 0.1SES
0.3E-2 7000. 0.6E-2 3000. 0.1020E-1 2200. 0.2020E-1 1000.
0.402E-1 500.

[

7 -2 1 9

.0 0.0 0.28-3 O.SES 0.4E-3 0.25e5 0.12E-2 0.15E5
2 7000. 0.6E-2 3000. 0.1020E-1 2200. 0.2020E-1 1000.
1 $00.

0 0.3E-6 0.2 0.58 72.8 0.17
88 89 9 107 116 133 142 159 168 237 232 229 22¢ 221 216 213
208 208 200 197 192 189 1883 187 186 185

Figure A.8 Soil-Structure Interaction Problem: Input for the Finest
8NQ Element Discretization (Continued).
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ELAST.-PERFECTLY PLAST. ANAL.OF A FIXED-ENDED BEAM WITH A CONC.LD (4NQ ELEMS.)
o 85 64 1 10 2000 3.4E-5 1O 2000.
e 3 0 0 0 1
AN 32.2 T
By 1 3 4 4-NODE PLANE CONTINUUM ELEMENTS
AR 0.01 2.0
G 16.0 4176.0E6 0.0 0.01 1.0
0.1E-2 0.4176E7
. 1 0.0 0.0
N 17 16.0 0.0
<= 18 0.0 1.0
> 34 16.0 1.0
- 35 0.0 2.0
S 51 16.0 2.0
52 0.0 3.0
M 68 16.0 3.0
69 0.0 4.0
) 8s 16.0 4.0
N 1 1 2 19 18 1
e 16 16 17 34 33 1
o 17 18 19 36 35 1
4 32 33 3¢ 51 50 1
e 33 35 36 53 s2 1
NG 48 SO S1 68 67 1
o 49 S2 53 70 69 1
S 64 67 68 85 84 1
o 111
¥ 1711
: 1811
L 3411
e 3511
L 5111
N 5211
X 6811
: 6911
- 8511
o 10 s 24 2
o 9204Y-DISPL MODE 9
N 26304Y-9150L. MK 26
o 43204Y-DISPL NODE &3
a 60204Y-DISPL WODE 60
77204Y-DISPL NODE 77
v 1 5461 )
N 17 SASTR 17
n? 33 S4STR 33
. 49 SAOTR 49
N 2 40 2
- 18 S4OTR 19
34 S4STR 34
~, SO S4STR SO
Y 3 S4STR 3
19 S4STR 19
‘ *:‘; 35 S4STR 35
o
% Figure A.9 Fixed-Ended Beam Problem: Input for the 4NQ Discretiza-
... tion.
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51 S4STR S1
6 54STR 6
22 S4STR 22
38 S4STR 38
54 S54STR 54
7 S4STR 7
23 S54STR 23

39 S4STR 39

8 S4STR &
24 S4STR 24
40 54STR 40
56 S4STR 56
1000 3
2000 3

1 2 17 5
1.7E-2 -2.7648E6 3.4E-2 -2.7648E6 5.1E-2 -4.1472E6

- O
oow

-4.1472E86

Figure A.9 Fixed-Ended Beam Problem: Input for the 4NQ Discretiza-
tion (Continued).
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ELAST.-PERFECTLY PLAST. ANAL.OF A FIXED-ENDED BEAM WITH A CONC.LD.(BNQ ELEMS.)

69 16 1 10 2000 3.4E-5 1 0 2000.0
3 0 0 1
32.2 FT
1 3 ¢ 8-NODE PLANE CONTINUUM ELEMENTS
2.0 2.0
16.0 4176.0E6 0.00 0.01 1.0
0.1E-2 0.4176E7
1
17 16.0
18 1.0
26 16.0 1.0
27 2.0
43 16.0 2.0
4“4 3.0
52 16.0 3.0
53 4.0
69 16.0 4.0
1 1 3 29 27 2 19 28 18 1
2 3 5 31 29 4 20 30 19 1
3 5 7 33 3 6 21 32 20 1
4 7 9 35 33 8 22 3¢ 21 1
5 9 11 37 35 10 23 36 22 1
6 11 13 39 37 12 24 38 23 1
7 13 15 41 39 14 25 40 24 1
8 15 17 43 41 16 26 42 25 1
9 27 29 55 53 28 45 S4¢ 44 1
10 29 31 57 S5 30 46 56 45 1 .
11 31 33 59 ST 32 47 S8 46 1
12 33 35 61 59 34 & 60 @ 1
13 35 37 63 &1 % & 2 e 1
16 37 39 65 63 38 50 64 @ 1
15§ 39 @1 67 65 &0 S1 66 SO 1
16 41 @3 6% 67 42 52 68 S 1
111
181
mi
o411
$311
17111
2611
4311
$211
6911
10~ -1 2¢ 2

3 9204%-DISPL NODE 9
y 22204%-D1SPL MODE 22
35200Y-918PL NOBE 38
48204Y-DISPL NODE 48
61204Y-DISPL NODE 61
1 S4STR 181
11S54STR 182
9 S4STR %01

Figure A.10 Fixed-Ended Beam Problem: Input for the 8NQ Discretiza-
tion.
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Fixed-Ended Beam Problem:

tion Continued).
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AXIS. ANAL. OF ONE-DIMENSIONAL WAVE PROPAGATION WITH DISPL./FREE END(4NQ ELEMS)

27 16 1 6 130 0.25 1 0
3 1
980. 1 DYNE DYNE
1 6 14 ELASTIC PLANE STRESS
0.0
1.0 1.0 0.0 0.0
1 0.0 0.0
9 0.0 le.0
10 2.0 0.0
18 2.0 16.0
19 4.0 0.0
27 4.0 16.0
1 1 10 1 2 1
8 8 17 18 9 1
9 10 19 20 11 1
16 17 26 27 18 1
112
1012
1912
910
1810
2710
1 19 6 3

I204Y-DISPL NODE=
3204Y-DISPL NODE=
$204Y-DISPL NODE=
7204Y-DISPL NODE=

~ W

12204Y-DISPL NODE=12
14204Y-DISPL NODE=14
16204Y-DISPL WOBE=16
21204Y-DISPL NOBDE=21
23204Y-DISPL NOOE=2)
25204Y-DISPL NOBE=25

Figure A.11

3214Y-VEL NS 3
$2147-VEL EDES= S

12214Y~-VEL MODE=12
14214Y-VEL SRO=14
182107-90L SI-16
21214Y-VEL WODEG=21
23214Y-VEL NODE=23
252147-VEL EBOE=25

Axisymmetric Wave Propagation Problem:
Discretization.

Input for the 4NQ
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Y Figure A.11 Axisymmetric Wave Propagation Problem: Input for the 4NQ
i Discretization (Continued).
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AXIS. ANAL. OF ONE-DIMENSIONAL WAVE PROPAGATION WITH DISPL./FREE END(8NQ ELEMS)
] 69 16 1 10 130 0.2 1 0
o 3 1
\ 980. CM DYNE DYNE
A 1 6 14 ELASTIC PLANE STRESS
N 2.0
) 1.0 1.0 0.0 0.0
, 1 0.0 0.0
N 5 4.0 0.0
NG 6 0.0 1.0
~T 8 4.0 1.0
NS 9 0.0 2.0
13 4.0 2.0
14 0.0 3.0
] 16 4.0 3.0
o 17 0.0 4.0
o 21 4.0 4.0
y 22 0.0 5.0
oo 24 4.0 5.0
Lo~ 25 0.0 6.0
- 29 6.0 6.0
30 0.0 7.0
. 32 4.0 7.0
Ty 33 0.0 8.0
s 37 4.0 8.0
s 0.0 9.0
R 40 4.0 9.0
" 41 0.0 10.0
o 'H 4.0 10.0
) Y3 0.0 11.0
e o8 4.0 1.0
o Y ) 0.0 12.0
) 53 6.0 12.0
' 54 0.0 12.0
: $6 4.0 13.0
. 57 0.0 14.0
>, 31 4.0 14.0
" 62 0.0 15.0
ot 6.0 15.0
[ 65 0.0 16.0
- 1) 4.0 16.0
1 1 3 11 % 2 7 10 6 1 &8
¢ 8 57 SS9 67 65 S8 63 66 62 1 8
e s 3 5§ 13 11 ¢ & 12 1 1 &
- 16 SS9 61 6% 67 60 64 68 63 2 (1
e 112 1
7 -512 1
6510 1
) -6910 1
st 1 19 24 3
oo 1204Y-DISPL NODE= 1
o~ 17204Y-DISPL NODE=1?
'~ 33204Y-DISPL WODE=33
1,91
[l A
7Y, Figure A.12 Axisymmetric Wave Propagation Problem: Input for the 8NQ
s Discretization.
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49204Y-DISPL NODE=49
19204Y-DISPL MODE=19
35204Y-DISPL NODE=3S
51204Y-DISPL NODE=51
21204Y-DISPL NODE=21
37204Y-DISPL NODE=37
$3204Y-DISPL NODEsS3
17214Y-VEL NODE=17
33214Y-VEL NODE=33
49214Y-VEL NODE=49
19214Y-VEL NODE=19
35214Y-VEL NODE=35
51214Y-VEL NODE=51
21214Y-VEL NODE=21
37214Y-VEL NODE=3?
$3214Y-VEL NODE=53

2 GASTRESS
2154STRESS
2244STRESS
2334STRESS
4 GASTRESS
4154STRESS
426ASTRESS
4334STRESS
6 64STRESS
6154STRESS
6244STRESS
6334STRESS
10 64STRESS
10154STRESS
102¢4STRESS
10334STRESS
12 GASTRESS
121545TRESS
12244STRESS
12334STRESS
14 64STRESS
14154STRESS
162045TIRSS
143348TRESS
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50

130

180 1 _10

1 17 33

1 S 2

Figure A.12
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EL2 4
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5L4 ®2
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ELe ™4
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EL1043
£L100¢
sL1261
EL1292
EL1203
EL12M4
£L1481
EL1682
t1e83
IL1604
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3
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6

4

10

00
.01
.02

Axisymmetric Wave Propagation Problem:

19 35
12 1e¢
2 1
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10.
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1.383k-2
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Discretizati .n (Continued).
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APPENDIX B

Gauss-Legendre Abscissae and Weight Coefficients

Table B.1 shows the Gauss-Legendre abscissae and weight

~
A
)
;
|

N
:
W
N
3
=

coefficients (*a and h) which are used in the Gaussian quadrature method
of numerical integration. These coefficients for Gaussian quadrature
are used in the SAMSON2 code in order to determine the lumped mass

matrix [M], the internal nodal force vector (F. .}, the internal strain

int

-

energy of the system U, and the external work of the system W for the
8NQ higher-order isoparametric continuum element. References 12, 14,
and 15 contain additional information about Gaussian quadrature and they
also contain a discussion on the practical applications of Gaussian

quadrature for the isoparametric element formulation.
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ls
. Table B.1 Gauss-Legendre Abscissae and Weight Coefficients for a
*r Particular Order of Integration n(n=1,10).
23 *a h
o n = 1
0 ) 2.00000 00000 00000
n=
0.57735 V2691 89626 1.00000 00000 00000
n=3
0.77459 66692 41483 0.55555 55555 55556
0.00000 00000 00000 0.88888 88888 88889
n=4
2 0.86113 63115 94053 0.34785 48451 37454
! 0.33998 10435 84856 5 0.65214 51548 625456
[ n=
3 0.90617 98459 38664 0.23692 68850 56189
:‘, 0.53846 93101 05683 0.47862 86704 99366
‘ 0.00000 00000 00000 0.56888 88888 88889
.. n=6
}:f 0.93246 95142 03152 0.17132 44923 79170
o 0.66120 93864 66265 0.36076 15730 48139
Dy 0.23861 91860 83197 0.46791 39345 72691
- n=7
;; 0.94910 79123 42759 0.12948 49661 68870
- 0.74153 11855 99394 0.27970 53914 89277
‘e 0.40584 51513 77397 0.38183 00505 05119
v 0.00000 00000 00000 0.41795 91836 73469
e n=8g
o 0.96028 98564 97536 0.10122 85362 90376
0.79666 64774 13627 0.22238 10344 53374
; 0.52553 24099 16329 0.31370 66458 77887
o 0.18343 46424 95650 0.36268 37833 78362
1\__ n=9
Cj 0.96816 02395 07626 0.08127 43883 61574
}' 0.83603 11073 26636 0.18064 B1606 94857
d 0.61337 14327 00590 0.26061 06964 02935
. 0.32425 34234 03809 0.31234 70770 40003
2. 0.00000 00000 00000 0.33023 93550 01260
- n=10
;5 0.97390 65285 17172 0.06667 13443 08688
2 0.86506 33666 88985 0.14945 13491 50581
- 0.67940 95682 99024 0.21908 63625 15982
5 0.43339 53941 29247 0.26926 67193 09996
~ 0.14887 43389 81631 0.29552 42247 14753
-J
A
5! qThe values for these coefficients were obtained from page 198 of
T Reference 15.
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. APPENDIX C

2 Development of the Elastic-Plastic Stress-Strain Matrix

\

B for the Plane Strain or Axisymmetric Material Law

o~

K The general equation that is used in order to determine the

.ES elastic-plastic stress-strain matrix (CEP) for biaxial analysis is shown

in Equation C.1 (see pp. 388-389 of Reference 14).

Qi

k> Pk cEigchignT 1)
A {(p} (g} + {q} C*{(q}

) where,

'i; cE = elastic stress-strain matrix,

‘:* {Q}T = [qll qu quz Q33]

G T

“ Y = [pyy Pyp P12 P33l

.\-

-}i This equation was formulated under the assumptions of isothermal

= conditions, isotropic hardening and an associated flow rule. The values
' for {q} and {p} are determined using the expressions shown in
.Y

) Equation C.2.
' aF . 3F_

d %3 " 3o T (€.2)

N -

- where,

2 F = yleld function that specifies the state of multiaxial

stress which corresponds to the start of plastic flow.

EE %y * normal and shearing stress components, and

”

o) e?j =  plastic strain increments.

;. )

<

g

I
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EP

The C-° matrix for the biaxia)l elastic-plastic plane strain or

axisymmetric material law was developed by substituting the expressions

shown in Equation C.3 into Equations C.1 and C.2.

- 4 _1on 2
F=33555; "% % (€.3)
%j = Sij Pij = M %
where,
Sij = deviatoric stresses,
Ox + 0 + Oz
T R eI T
where Gi. = ] for the normal stresses and
= 0 for the shear stresses, and
3 (E'ET)
EP

The development of C- was performed in three tasks. The first task was

the multiplication of C (Equation 4.39 in Section 4.2.4.2) by {q}. The
results of this multiplication are shown in Equation C.4.

511 ¢ T (S22 ¢ Sy

v
Sp2 * T=v (Sq; * S33)

E E(l = v
e} = YT 1-2v ¢ (C.4)
T °12

\Y
S33 * 1= (511 * S22)
The next task was the multiplication of {p}T by {q} with the result

shown in Equation C.5.
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Py 055

EE
T 2 T, n 2
{p} {Q} = 3 (!T{.) Uy]d (C.S)

]
&% 5%

CA

T A@ PRI
. 2N

A

where,

n 2
°y1d

2
y

2 2 2 2
= 3'(°x + 9y +tag, - 0,0y = 00y ~ °y°z) + 21

The fina) task involved the substitution of the results shown in
Ep

-
S
v

Equations C.4 and C.5 into Equation C.1. This task resulted in the C

matrix shown in Table C.1. This matrix was used in subroutine STRES3

according to the discussion in Sections 4.2.4.2 and 4.2.4.3.
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